This paper compares different low-cost sensors that can measure (5G) RF-EMF exposure. The sensors are either commercially available (off-the-shelf Software Defined Radio (SDR) Adalm Pluto) or constructed by a research institution (i.e., imec-WAVES, Ghent University and Smart Sensor Systems research group (S3R), The Hague University of Applied Sciences). Both in-lab (GTEM cell) and in-situ measurements have been performed for this comparison. The in-lab measurements tested the linearity and sensitivity, which can then be used to calibrate the sensors. The in-situ testing confirmed that the low-cost hardware sensors and SDR can be used to assess the RF-EMF radiation. The variability between the sensors was 1.78 dB on average, with a maximum deviation of 5.26 dB. Values between 0.09 V/m and 2.44 V/m were obtained at a distance of about 50 m from the base station. These devices can be used to provide the general public and governments with temporal and spatial 5G electromagnetic field values.
In the GoGreen project an intelligent home that is able to identify inhabitants and events that take place is created. The location of sounds that are being produced is an important feature for the context awareness of this system. A a wireless solution that uses low-cost sensor nodes and microphones is described. Experiments show that solutions that only use the three sensor nodes that are closest to the origin of the sounds provide the best solutions, with an average accuracy of 40 cm or less.Paper published for the ICT Open 2013 proceedings (27-28 November 2013, Eindhoven).
MULTIFILE
On-time departure performance is important for airlines that seek the highest satisfaction of their passengers. The main component of achieving on-time departure is being able to complete the turnaround operations of an aircraft within the scheduled time. To address this problem, the present paper examined planning and scheduling of turnaround operations in the low cost airline industry. A mathematical model, named 'TurnOper_LP' was developed for a low-cost Turkish airline to identify the critical path of turnaround operations and the optimal turnaround time. The results of the model in terms of optimised turnaround times are then analysed and an example of schedule of turnaround operations is presented.
Noord-Nederland telt ongeveer 70.000 ha akkerbouw, waarvan 14.000 ha pootaardappelen. De totale jaaromzet van de pootaardappelteelt bedraagt ongeveer 230 miljoen euro (exclusief de omzet van toeleverende en dienstverlenende bedrijven). Van alle productielanden samen, neemt Noord-Nederland met 23% van de wereldwijde export van gecertificeerd pootgoed een absolute toppositie in. Om deze toppositie te behouden, is continu aandacht voor productiviteit, duurzaamheid en kwaliteitsverbetering vereist. Bij de huidige bedrijfsomvang kan een geautomatiseerde gewasinspectie daarbij zeer behulpzaam zijn. Kwalitatief hoogwaardiger inspectie tegen lagere kosten kan de kwaliteit en de kostprijs van gewassen in de precisielandbouw verbeteren. Voor pootgoedtelers is het belangrijk te weten wat de kwaliteit van de plant is, in relatie met de gepote aardappel. Doelstelling is het verkrijgen van inzicht in de methoden, technieken en algoritmen die nodig zijn voor het automatisch bepalen van het opkomstgedrag van individuele aardappelplanten met behulp van low-cost drones. Koelhuis Bergmans stelt de akkervelden waar opnames van gemaakt worden beschikbaar. Ana Vita heeft veel ervaring in het ontwikkelen van nieuwe markten in de precisielandbouw. De NHL is in het bezit van een ROC-light ontheffing om met drones tot 4 kg te mogen vliegen. Tevens onderzoekt de NHL welke methoden, technieken en algoritmen gebruikt kunnen worden. Dit project levert een dataset met hierin periodiek opgenomen beelden van aardappelplanten, methodes voor het bepalen van individuele aardappelplantgroei en een beschrijving van de onderzoeksresultaten in de vorm van een (wetenschappelijke) paper.
In the context of global efforts to increase sustainability and reduce CO2 emissions in the chemical industry, bio-based materials are receiving increasing attention as renewable alternatives to petroleum-based polymers. In this regard, Visolis has developed a bio-based platform centered around the efficient conversion of plant-derived sugars to mevalonolactone (MVL) via microbial fermentation. Subsequently, MVL is thermochemically converted to bio-monomers such as isoprene and 3-methyl-1,5-pentane diol, which are ultimately used in the production of polymer materials. Currently, the Visolis process has been optimized to use high-purity, industrial dextrose (glucose) as feedstock for their fermentation process. Dutch Sustainable Development (DSD) has developed a direct processing technology in which sugar beets are used for fermentation without first having to go through sugar extraction and refinery. The main exponent of this technology is their patented Betaprocess, in which the sugar beet is essentially exposed to heat and a mild vacuum explosion, opening the cell walls and releasing the sugar content. This Betaprocess has the potential to speed up current fermentation processes and lower feedstock-related costs. The aim of this project is to combine aforementioned technologies to enable the production of mevalonolactone using sucrose, present in crude sugar beet bray after Betaprocessing. To this end, Zuyd University of Applied Sciences (Zuyd) intends to collaborate with Visolis and DSD. Zuyd will utilize its experience in both (bio)chemical engineering and fermentation to optimize the process from sugar beet (pre)treatment to product recovery. Visolis and DSD will contribute their expertise in microbial engineering and low-cost sugar production. During this collaboration, students and professionals will work together at the Chemelot Innovation and Learning Labs (CHILL) on the Brightlands campus in Geleen. This collaboration will not only stimulate innovation and sustainable chemistry, but also provides starting professionals with valuable experience in this expanding field.
The valorization of biowaste, by exploiting side stream compounds as feedstock for the sustainable production of bio-based materials, is a key step towards a more circular economy. In this regard, chitin is as an abundant resource which is accessible as a waste compound of the seafood industry. From a commercial perspective, chitin is chemically converted into chitosan, which has multiple industrial applications. Although the potential of chitin has long been established, the majority of seafood waste containing chitin is still left unused. In addition, current processes which convert chitin into chitosan are sub-optimal and have a significant impact on the environment. As a result, there is a need for the development of innovative methods producing bio-based products from chitin. This project wants to contribute to these challenges by performing a feasibility study which demonstrates the microbial bioconversion of chitin to polyhydroxyalkanoates (PHAs). Specifically, the consortium will attempt to cultivate and engineer a recently discovered bacterium Chi5, so that it becomes able to directly produce PHAs from chitin present in solid shrimp shell waste. If successful, this project will provide a proof-of-concept for a versatile microbial production platform which can contribute to: i) the valorization of biowaste from the seafood industry, ii) the efficient utilization of chitin as feedstock, iii) the sustainable and (potentially low-cost) production of PHAs. The project consortium is composed of: i) Van Belzen B.V., a Dutch shrimp trading company which are highly interested in the valorization of their waste streams, hereby making their business model more profitable and sustainable. ii) AMIBM, which have recently isolated and characterized the Chi5 marine-based chitinolytic bacterium and iii) Zuyd, which will link aforementioned partners with students in creating a novel collaboration which will stimulate the development of students and the translation of academic knowledge to a feasible application technology for SME’s.