Wind and solar power generation will continue to grow in the energy supply of the future, but its inherent variability (intermittency) requires appropriate energy systems for storing and using power. Storage of possibly temporary excess of power as methane from hydrogen gas and carbon dioxide is a promising option. With electrolysis hydrogen gas can be generated from (renewable) power. The combination of such hydrogen with carbon dioxide results in the energy carrier methane that can be handled well and may may serve as carbon feedstock of the future. Biogas from biomass delivers both methane and carbon dioxide. Anaerobic microorganisms can make additional methane from hydrogen and carbon dioxide in a biomethanation process that compares favourably with its chemical counterpart. Biomethanation for renewable power storage and use makes appropriate use of the existing infrastructure and knowledge base for natural gas. Addition of hydrogen to a dedicated biogas reactor after fermentation optimizes the biomethanation conditions and gives maximum flexibility. The low water solubility of hydrogen gas limits the methane production rate. The use of hollow fibers, nano-bubbles or better-tailored methane-forming microorganisms may overcome this bottleneck. Analyses of patent applications on biomethanation suggest a lot of freedom to operate. Assessment of biomethanation for economic feasibility and environmental value is extremely challenging and will require future data and experiences. Currently biomethanation is not yet economically feasible, but this may be different in the energy systems of the near future.
Overcoming Challenges in local green H2 economies Organizer: Dr Beata Kviatek, Jean Monnet Chair in Sustainable EU Economy, Centre of Expertise Energy / International Business School / Hanze University of Applied Sciences Groningen, the Netherlands One of the main pathways of the current energy transition includes development of regional green hydrogen economy, usually based in the so-called hydrogen valleys. The development of regional green hydrogen economies enables to green up regional industry and mobility, brings new business opportunities for local and regional businesses, redirects regional investments and financial streams, and proposes new avenues for regional education, knowledge, and research institutions. However, the complexity of regional transformation towards green hydrogen economy, poses challenges that require a close cooperation between different local and regional stakeholders at multiple levels, including national and European. What are these challenges in developing regional green hydrogen economies here, in the northern part of the Netherlands, and in other regions of Europe and what are the new pathways to overcome challenges in regional green hydrogen economies? – is the main question of the proposed panel discussion that will involve academics, policy makers, and practitioners from the northern part of the Netherlands as well as some European regions.
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.