Background Inconsistent descriptions of Lumbar multifidus (LM) morphology were previously identified, especially in research applying ultrasonography (US), hampering its clinical applicability with regard to diagnosis and therapy. The aim of this study is to determine the LM-sonoanatomy by comparing high-resolution reconstructions from a 3-D digital spine compared to standard LM-ultrasonography. Methods An observational study was carried out. From three deeply frozen human tissue blocks of the lumbosacral spine, a large series of consecutive photographs at 78 µm interval were acquired and reformatted into 3-D blocks. This enabled the reconstruction of (semi-)oblique cross-sections that could match US-images obtained from a healthy volunteer. Transverse and oblique short-axis views were compared from the most caudal insertion of LM to L1. Results Based on the anatomical reconstructions, we could distinguish the LM from the adjacent erector spinae (ES) in the standard US imaging of the lower spine. At the lumbosacral junction, LM is the only dorsal muscle facing the surface. From L5 upwards, the ES progresses from lateral to medial. A clear distinction between deep and superficial LM could not be discerned. We were only able to identify five separate bands between every lumbar spinous processes and the dorsal part of the sacrum in the caudal anatomical cross-sections, but not in the standard US images. Conclusion The detailed cross-sectional LM-sonoanatomy and reconstructions facilitate the interpretations of standard LM US-imaging, the position of the separate LM-bands, the details of deep interspinal muscles, and demarcation of the LM versus the ES. Guidelines for electrode positioning in EMG studies should be refined to establish reliable and verifiable findings. For clinical practice, this study can serve as a guide for a better characterisation of LM compared to ES and for a more reliable placement of US-probe in biofeedback.
Depression is a highly prevalent and seriously impairing disorder. Evidence suggests that music therapy can decrease depression, though the music therapy that is offered is often not clearly described in studies. The purpose of this study was to develop an improvisational music therapy intervention based on insights from theory, evidence and clinical practice for young adults with depressive symptoms. The Intervention Mapping method was used and resulted in (1) a model to explain how emotion dysregulation may affect depressive symptoms using the Component Process Model (CPM) as a theoretical framework; (2) a model to clarify as to how improvisational music therapy may change depressive symptoms using synchronisation and emotional resonance; (3) a prototype Emotion-regulating Improvisational Music Therapy for Preventing Depressive symptoms (EIMT-PD); (4) a ten-session improvisational music therapy manual aimed at improving emotion regulation and reducing depressive symptoms; (5) a program implementation plan; and (6) a summary of a multiple baseline study protocol to evaluate the effectiveness and principles of EIMT-PD. EIMT-PD, using synchronisation and emotional resonance may be a promising music therapy to improve emotion regulation and, in line with our expectations, reduce depressive symptoms. More research is needed to assess its effectiveness and principles.
BackgroundPhysical exercise in cancer patients is a promising intervention to improve cognition and increase brain volume, including hippocampal volume. We investigated whether a 6-month exercise intervention primarily impacts total hippocampal volume and additionally hippocampal subfield volumes, cortical thickness and grey matter volume in previously physically inactive breast cancer patients. Furthermore, we evaluated associations with verbal memory.MethodsChemotherapy-exposed breast cancer patients (stage I-III, 2–4 years post diagnosis) with cognitive problems were included and randomized in an exercise intervention (n = 70, age = 52.5 ± 9.0 years) or control group (n = 72, age = 53.2 ± 8.6 years). The intervention consisted of 2x1 hours/week of supervised aerobic and strength training and 2x1 hours/week Nordic or power walking. At baseline and at 6-month follow-up, volumetric brain measures were derived from 3D T1-weighted 3T magnetic resonance imaging scans, including hippocampal (subfield) volume (FreeSurfer), cortical thickness (CAT12), and grey matter volume (voxel-based morphometry CAT12). Physical fitness was measured with a cardiopulmonary exercise test. Memory functioning was measured with the Hopkins Verbal Learning Test-Revised (HVLT-R total recall) and Wordlist Learning of an online cognitive test battery, the Amsterdam Cognition Scan (ACS Wordlist Learning). An explorative analysis was conducted in highly fatigued patients (score of ≥ 39 on the symptom scale ‘fatigue’ of the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire), as previous research in this dataset has shown that the intervention improved cognition only in these patients.ResultsMultiple regression analyses and voxel-based morphometry revealed no significant intervention effects on brain volume, although at baseline increased physical fitness was significantly related to larger brain volume (e.g., total hippocampal volume: R = 0.32, B = 21.7 mm3, 95 % CI = 3.0 – 40.4). Subgroup analyses showed an intervention effect in highly fatigued patients. Unexpectedly, these patients had significant reductions in hippocampal volume, compared to the control group (e.g., total hippocampal volume: B = −52.3 mm3, 95 % CI = −100.3 – −4.4)), which was related to improved memory functioning (HVLT-R total recall: B = −0.022, 95 % CI = −0.039 – −0.005; ACS Wordlist Learning: B = −0.039, 95 % CI = −0.062 – −0.015).ConclusionsNo exercise intervention effects were found on hippocampal volume, hippocampal subfield volumes, cortical thickness or grey matter volume for the entire intervention group. Contrary to what we expected, in highly fatigued patients a reduction in hippocampal volume was found after the intervention, which was related to improved memory functioning. These results suggest that physical fitness may benefit cognition in specific groups and stress the importance of further research into the biological basis of this finding.