The full potential of predictive maintenance has not yet been utilised. Current solutions focus on individual steps of the predictive maintenance cycle and only work for very specific settings. The overarching challenge of predictive maintenance is to leverage these individual building blocks to obtain a framework that supports optimal maintenance and asset management. The PrimaVera project has identified four obstacles to tackle in order to utilise predictive maintenance at its full potential: lack of orchestration and automation of the predictive maintenance workflow, inaccurate or incomplete data and the role of human and organisational factors in data-driven decision support tools. Furthermore, an intuitive generic applicable predictive maintenance process model is presented in this paper to provide a structured way of deploying predictive maintenance solutions https://doi.org/10.3390/app10238348 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
From the article: "Abstract Maintenance processes of Dutch housing associations are often still organized in a traditional manner. Contracts are based on lowest price instead of ‘best quality for lowest price’ considering users’ demands. Dutch housing associations acknowledge the need to improve their maintenance processes in order to lower maintenance cost, but are not sure how. In this research, this problem is addressed by investigating different supply chain partnering principles and the role of information management. The main question is “How can the organisation of maintenance processes of Dutch housing associations, in different supply chain partnering principles and the related information management, be improved?” The answer is sought through case study research."
DOCUMENT
While smart maintenance is gaining popularity in professional engineering and construction management practice, little is known about the dimensions of its maturity. It is assumed that the complex networked environment of maintenance and the rise of data-driven methodologies require a different perspective on maintenance. This paper identifies maturity dimensions for smart maintenance of constructed assets that can be measured. A research design based on two opposite cases is used and data from multiple sources is collected in four embedded case studies in corporate facility management organizations. Through coding data in several cross-case analyses, a maturity framework is designed that is validated through expert consultation. The proposed smart maintenance maturity framework includes technological dimensions (e.g., tracking and tracing) as well as behavioral dimensions (e.g., culture). It presents a new and encompassing theoretical perspective on client leadership in digital construction, integrating innovation in both construction and maintenance supply networks.
DOCUMENT
The current set of research methods on ictresearchmethods.nl contains only one research method that refers to machine learning: the “Data analytics” method in the “Lab” strategy. This does not reflect the way of working in ML projects, where Data Analytics is not a method to answer one question but the main goal of the project. For ML projects, the Data Analytics method should be divided in several smaller steps, each becoming a method of its own. In other words, we should treat the Data Analytics (or more appropriate ML engineering) process in the same way the software engineering process is treated in the framework. In the remainder of this post I will briefly discuss each of the existing research methods and how they apply to ML projects. The methods are organized by strategy. In the discussion I will give pointers to relevant tools or literature for ML projects.
LINK
This book is both a short introduction to the recent developments, challenges and opportunities in Aviation Maintenance, Repair and Overhaul(MRO), and at the same time, a presentation of the research focal areas and the key waypoints towards smarter and more sustainable MRO. Innovation and integration have always been key aspects of Aviation. Currently, evolutions in aircraft design, materials and production techniques are ahead of the MRO practices in use.This gap is creating demand for new knowledge to develop and operationalise adaptive, digital and sustainable MRO tools, applicable or integrated in modern aircraft systems and components.
DOCUMENT
Innovation seems to be the most important element of activities of companies to stay vital in a very competitive international market. Innovation is the process of developing products or services in an organisation for a market. Especially small and medium-sized companies, for which it is difficult to invest in innovation research and development, need to be provided with young professionals to help them make the right decisions on innovation development. At the moment higher professional education in the Netherlands is not preparing students enough as future professionals in SMEs, for the task if initiating and to developing innovations in these SME's. Therefore it is needed that higher professional education comprehensively implement these innovation competences in its curriculum. At the Fontys University of Applied Sciences in Eindhoven, the Netherlands, innovation has become an important element in teaching students innovation competences. In 2007/8 a pilot has been introduced the department of Engineering with first year students in a multidisciplinary and action-based setting. First year students of Mechanical and Electrical Engineering in a 5-credit programme try to find new patentable products. The outcome of this first try-out was that students realized the importance of innovation for the profession and they were eager to work in this innovative setting. Some adjustments in the education will be made as there are: timetable and project settings to timetables and schedules will have to be made.
DOCUMENT
The aim of this paper is to show the benefits of enhancing classic Risk Based Inspection (without fatigue monitoring data) with an Advisory Hull Monitoring System (AHMS) to monitor and justify lifetime consumption to provide more thorough grounds for operational, inspection, repair and maintenance decisions whilst demonstrating regulatory compliance.
DOCUMENT
An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector—most notably in the wind energy, automotive, aerospace, and marine domains. The foundation of this investigation is material characterization, which offers insights into the mechanical, chemical, and physical characteristics that determine composite performance. The papers in this collection discuss the difficulties of gaining an in-depth understanding of composites, which is necessary to maximize their overall performance and design. The collection of articles within this topic addresses the challenges of achieving a profound understanding of composites, which is essential for optimizing design and overall functionality. This includes the application of complicated material modeling together with cutting-edge simulation tools that integrate multiscale methods and multiphysics, the creation of novel characterization techniques, and the integration of nanotechnology and additive manufacturing. This topic offers a detailed overview of the current state and future directions of composite research, covering experimental studies, theoretical evaluations, and numerical simulations. This subject provides a platform for interdisciplinary cooperation and creativity in everything from the processing and testing of innovative composite structures to the inspection and repair procedures. In order to support the development of more effective, durable, and sustainable materials for the mechanical and aerospace engineering industries, we seek to promote a greater understanding of composites.
DOCUMENT
Insider ethnographic analysis is used to analyze change processes in an engineering department. Distributed leadership theory is used as conceptual framework.
DOCUMENT
This chapter explains in brief what is needed to achieve more sustainable manufacturing processes. It develops both aspects of sustainable, economic, and technical feasibility with most focus on the latter. Remanufacturing processes are described together with relevant factors that enhance their effectivity and efficiency. An overview is given of what kind of shopfloor innovations are required in the near future and some suggestions on how digital and other Industry 4.0 technologies could help to move toward circular manufacturing.
MULTIFILE