Concerns about the negative consequences of the excessive underpricing of the current arrangement in the initial public offering (IPO) market for the provision of entrepreneurial finance—book building—have led to research into the viability of auctions for IPO pricing and allocation. IPO firms face a trade-off between the benefit of accurate and reliable IPO price discovery and the cost of underpricing. The main aim of this paper was to gain new scientific knowledge about this trade-off by measuring the impact of two key variables on this trade-off: capacity restraint and discount on the auction clearing price. Using controlled experiment methodology in multi-unit uniform price auctions we found that the most capacity-restricted auctions that also offer investors a discount are likely to produce the most accurate and reliable price discovery and consequently, the most predictable auction outcome. There are indications that a discount of 8% may suffice to incentivize investors to reliably contribute to price discovery. The resulting underpricing (and its variability) of these auctions is likely to be significantly lower than if book building would be used to price and allocate IPOs. Technological innovation in the IPO market through the application of recent advances in data science, experimental economics and artificial intelligence allows for the optimization of IPO mechanisms and crowdfunding platforms which in turn improves the access to equity required for entrepreneurial finance.
DOCUMENT
This paper addresses one important mechanism through which the EU tries to improve the operation of its labour markets: the opening up of national borders for free worker movement within the EU. Free worker movement is a fundamental EU right; but EU enlargement begged the question of how and when to allow complete free movement to workers from those new Member States. The EU agreed upon a transitional period of up to 7 years after accession of eight new Middle and Eastern European States (EU-8) on May 1st, 2004. Duringthis transitional period Member States may apply certain restrictions on the free movement of workers from, to and between these new Member States. By 2012, all such restrictions will have been abolished. A similar procedure applies regarding the accession of two additional new Member States on January 1st, 2007. Only three of the fifteen incumbent EU Member States at the time (EU-15) chose to immediately allow free movement from workers from the EU-8. The other twelve maintained their work permit systems, albeit with some modifications. Since, some (e.g. Germany) have already decided to keep such barriers in place until 2012. The Netherlands has kept a work permit system in place up to May 1st, 2007. At that time it abolished that system and effectively extended free worker movement to include workers from the EU-8. This makes the Dutch case, at this point in time, an interesting case for which to analyse the process and effects of increased free labour movement into a national labourmarket. This paper discusses the evolution of (temporary) work migration from EU-8 countries into the Netherlands. It first addresses the flexicurity nature of EU policies towards labour market integration and towards the inclusion of new EU countries in that process. It subsequentely reviews the three socio-legal regimes that can currently apply to work performed for Dutch firms Netherlands by workers from the EU-8 (which, now, is that same as that applies for workers from the EU-15): wage employment; employment through temporary employment agencies; and self-employment. It then discusses the development of the volume of work performed by citizens from the EU-8 in the Netherlands, and socio-economic effects for both the migrant workers and Dutch society and economy. It concludes with a discussion of challenges (or the lack thereof) that this increased free movement of foreign labour caused and causes for Dutch institutions.
DOCUMENT
Peer-to-peer (P2P) energy trading has been recognized as an important technology to increase the local self-consumption of photovoltaics in the local energy system. Different auction mechanisms and bidding strategies haven been investigated in previous studies. However, there has been no comparatively analysis on how different market structures influence the local energy system’s overall performance. This paper presents and compares two market structures, namely a centralized market and a decentralized market. Two pricing mechanisms in the centralized market and two bidding strategies in the decentralized market are developed. The results show that the centralized market leads to higher overall system self-consumption and profits. In the decentralized market, some electricity is directly sold to the grid due to unmatchable bids and asks. Bidding strategies based on the learning algorithm can achieve better performance compared to the random method.
DOCUMENT
In order to achieve much-needed transitions in energy and health, systemic changes are required that are firmly based on the principles of regard for others and community values, while at the same time operating in market conditions. Social entrepreneurship and community entrepreneurship (SCE) hold the promise to catalyze such transitions, as they combine bottom-up social initiatives with a focus on financially viable business models. SCE requires a facilitating ecosystem in order to be able to fully realize its potential. As yet it is unclear in which way the entrepreneurial ecosystem for social and community entrepreneurship facilitates or hinders the flourishing and scaling of such entrepreneurship. It is also unclear how exactly entrepreneurs and stakeholders influence their ecosystem to become more facilitative. This research programme addresses these questions. Conceptually it integrates entrepreneurial ecosystem frameworks with upcoming theories on civic wealth creation, collaborative governance, participative learning and collective action frameworks.This multidisciplinary research project capitalizes on a unique consortium: the Dutch City Deal ‘Impact Ondernemen’. In this collaborative research, we enhance and expand current data collection efforts and adopt a living-lab setting centered on nine local and regional cases for collaborative learning through experimenting with innovative financial and business models. We develop meaningful, participatory design and evaluation methods and state-of-the-art digital tools to increase the effectiveness of impact measurement and management. Educational modules for professionals are developed to boost the abovementioned transition. The project’s learnings on mechanisms and processes can easily be adapted and translated to a broad range of impact areas.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.