De World Conference on Physics Education vond plaats in Istanbul van 1 – 6 juli met als thema The Role of Context, Culture,and Representations in Physics Teaching and Learning. Deze conferentie wordt eens in de vier jaar door de Europese, Aziatische, en Amerikaanse natuurkunde onderwijs organisaties georganiseerd . Er waren 350 deelnemers waaronder de top van de Amerikaanse en Europese natuurkunde onderwijsspecialisten. Presentaties betroffen allerlei aspecten van natuurkunde onderwijs zoals toepassing van ICT, begripsmoeilijkheden van leerlingen, toetsing, onderzoekend leren, spectaculaire demonstraties, etc. HvA was vertegenwoordigd door Mirjam Venneker van VO-BVE-BiNaSk en lector Ed van den Berg (Pabo). Ed was een van de keynote speakers. Een downloadable annotated powerpoint is te vinden op: http://www.wcpe2012.org/keynote-speakers.html.
MULTIFILE
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.