This overview can be regarded as an atlas or travel guide with which the reader can follow a route along the various professorships. Chapter 2 centres on the professorships that are active in the field of Service Economy. Chapter 3 is dedicated to the professorships that are focussed on the field of Vital Region. Chapter 4 describes the professorships operating in the field of Smart Sustainable Industries. Chapter 5 deals with the professorships that are active in the field of the institution-wide themes of Design Based Education and Design Based Research. Lastly, in Chapter 6 we make an attempt to discover one or more connecting themes or procedures in the approach of the various professorships. This publication is not intended to give a definitive answer to the question as to what exactly NHL Stenden means by the concept of Design Based Research. The aim of this publication is to get an idea of everything that is happening in the NHL Stenden professorships and to pique one’s curiosity to find out more.
Growing volumes of wood are being used in construction, interior architecture, and product design, resulting in increasing amounts of wood waste. Using this waste is challenging, because it is too labor-intensive to process large volumes of uneven wood pieces that vary in geometry, quality, and origin. The project “Circular Wood for the Neighborhood” researches how advanced computational design and robotic production approaches can be used to create meaningful applications from waste wood. shifting the perception of circular wood as a simply harvested stream, towards a material with unique aesthetics of its own right. The complexity of the material is suggested to be tackled by switching from the object-oriented design towards designing soft systems. The system developed uses a bottom-up approach where each piece of wood aggregates according to certain parameters and the designed medium is mainly rule-sets and connections. The system is able to produce many options and bring the end-user for a meaningful co-design instead of choosing from the pre-designed options. Material-driven design algorithms were developed, which can be used by designers and end-users to design bespoke products from waste wood. In the first of three case studies, a small furniture item (“coffee table”) was designed from an old door, harvested from a renovation project. For its production, two principle approaches were developed: with or without preprocessing the wood. The principles were tested with an industrial robotic arm and available waste wood. A first prototype was made using the generated aggregation from the system, parametric production processes and robotic fabrication.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.