The design and use of online materials for blended learning have been in the spotlight of educational development over the last decade. With respect to didactical courses, however, the potential of online and blended learning seems to be underexplored; little is known about its affordances for teacher education, and for domain specific didactical courses in particular. To investigate this potential, as well as the ways to organize the co-design of such learning units, we carried out a small and short-term research project in which teacher educators in the Netherlands engaged in a co-design process of developing and field-testing open online learning units for mathematics and science didactics. We focused on the features of the designed online learning units, on the organization of the co-design process, and on the experiences with the learning units in teacher education practice. A first conclusion was that it was most fruitful to design building blocks rather than ready-to-use courses, and that students should have play a role in the materials. With respect to the co-design process, intensive meetings of small design teams seemed an efficient approach. The experiences in the field tests revealed that the learning units were inspiring, but needed finalization, and educators needed time to prepare the incorporation in their existing educational practices. In the future, the resulting learning units will be maintained and extended, and are expected to contribute to a community of practice of mathematics and science educators.
The urgency for developing a circular economy is growing, and more and more companies and organisations are concerned with the importance of adapting their business to fit a changing economy. However, many analyses on the circular economy are still rather abstract and there is a lack of understanding about what circularity would mean for specific industries. This insufficient insight especially seems to be apparent in the building and construction sector. Besides, the building and construction sector is responsible for a major part of energy use and emissions. To tackle the issue of insufficient insight into the business consequences of circular developments, further research is necessary. Therefore, we propose to collaborate on a research project that aims to provide a more detailed level of analysis. The goal is to identify drivers and barriers to make better use of materials in the building and construction sector. This further research would benefit from an international collaboration between universities of applied sciences and industry from different European countries. An additional benefit of the applied orientation would be the relevance for professional education programmes. The article is published in the proceedings of the conference : http://dx.doi.org/10.4995/CARPE2019.2019.10582 Publisher Editorial Universitat Politècnica de València, 2019 www.lalibreria.upv.es / Ref.: 6523_01_01_01 Creative Commons Atribution-NonCommercial-NonDetivates-4.0 Int.
MULTIFILE
An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector—most notably in the wind energy, automotive, aerospace, and marine domains. The foundation of this investigation is material characterization, which offers insights into the mechanical, chemical, and physical characteristics that determine composite performance. The papers in this collection discuss the difficulties of gaining an in-depth understanding of composites, which is necessary to maximize their overall performance and design. The collection of articles within this topic addresses the challenges of achieving a profound understanding of composites, which is essential for optimizing design and overall functionality. This includes the application of complicated material modeling together with cutting-edge simulation tools that integrate multiscale methods and multiphysics, the creation of novel characterization techniques, and the integration of nanotechnology and additive manufacturing. This topic offers a detailed overview of the current state and future directions of composite research, covering experimental studies, theoretical evaluations, and numerical simulations. This subject provides a platform for interdisciplinary cooperation and creativity in everything from the processing and testing of innovative composite structures to the inspection and repair procedures. In order to support the development of more effective, durable, and sustainable materials for the mechanical and aerospace engineering industries, we seek to promote a greater understanding of composites.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.