Meaning-making and sense-making are generally assumed to be part of students’ personal vocational knowledge development, since they contribute to both students’ socialisation in a vocation and students’ personalisation of concepts, values and beliefs regarding that vocation. However, how students in vocational education acquire meaning and make sense of vocational knowledge is not explained. Furthermore, examples of what these processes entail in the context of vocational education are lacking. A multiple case study was performed to explore students’ meaning-making and sense-making in classroom interactions in Dutch senior secondary vocational education. Our results show that meaning-making is a process in which students interpret vocational knowledge by explicating and clarifying this knowledge. Sense-making is perceived to be a process in which students concretise vocational knowledge by testing and justifying this knowledge. A research model was developed to describe how students make meaning and sense of vocational knowledge in interaction with practitioners.
DOCUMENT
Objective: To construct the underlying value structure of shared decision making (SDM) models. Method: We included previously identified SDM models (n = 40) and 15 additional ones. Using a thematic analysis, we coded the data using Schwartz’s value theory to define values in SDM and to investigate value relations. Results: We identified and defined eight values and developed three themes based on their relations: shared control, a safe and supportive environment, and decisions tailored to patients. We constructed a value structure based on the value relations and themes: the interplay of healthcare professionals’ (HCPs) and patients’ skills [Achievement], support for a patient [Benevolence], and a good relationship between HCP and patient [Security] all facilitate patients’ autonomy [Self-Direction]. These values enable a more balanced relationship between HCP and patient and tailored decision making [Universalism]. Conclusion: SDM can be realized by an interplay of values. The values Benevolence and Security deserve more explicit attention, and may especially increase vulnerable patients’ Self-Direction. Practice implications: This value structure enables a comparison of values underlying SDM with those of specific populations, facilitating the incorporation of patients’ values into treatment decision making. It may also inform the development of SDM measures, interventions, education programs, and HCPs when practicing.
DOCUMENT
Expectations are high for digital technologies to address sustainability related challenges. While research into such applications and the twin transformation is growing rapidly, insights in the actual daily practices of digital sustainability within organizations is lacking. This is problematic as the contributions of digital tools to sustainability goals gain shape in organizational practices. To bridge this gap, we develop a theoretical perspective on digital sustainability practices based on practice theory, with an emphasis on the concept of sociomateriality. We argue that connecting meanings related to sustainability with digital technologies is essential to establish beneficial practices. Next, we contend that the meaning of sustainability is contextspecific, which calls for a local meaning making process. Based on our theoretical exploration we develop an empirical research agenda.
MULTIFILE
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.
In recent years, disasters are increasing in numbers, location, intensity and impact; they have become more unpredictable due to climate change, raising questions about disaster preparedness and management. Attempts by government entities at limiting the impact of disasters are insufficient, awareness and action are urgently needed at the citizen level to create awareness, develop capacity, facilitate implementation of management plans and to coordinate local action at times of uncertainty. We need a cultural and behavioral change to create resilient citizens, communities, and environments. To develop and maintain new ways of thinking has to start by anticipating long-term bottom-up resilience and collaborations. We propose to develop a serious game on a physical tabletop that allows individuals and communities to work with a moderator and to simulate disasters and individual and collective action in their locality, to mimic real-world scenarios using game mechanics and to train trainers. Two companies–Stratsims, a company specialized in game development, and Society College, an organization that aims to strengthen society, combine their expertise as changemakers. They work with Professor Carola Hein (TU Delft), who has developed knowledge about questions of disaster and rebuilding worldwide and the conditions for meaningful and long-term disaster preparedness. The partners have already reached out to relevant communities in Amsterdam and the Netherlands, including UNUN, a network of Ukrainians in the Netherlands. Jaap de Goede, an experienced strategy simulation expert, will lead outreach activities in diverse communities to train trainers and moderate workshops. This game will be highly relevant for citizens to help grow awareness and capacity for preparing for and coping with disasters in a bottom-up fashion. The toolkit will be available for download and printing open access, and for purchase. The team will offer training and facilitate workshops working with local communities to initiate bottom-up change in policy making and planning.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.