gains and internal gains from appliances,heat gains from occupants are an importantsource contributing to space heating indomestic buildings. It is necessary toconsciously consider all of these heat gainswhen aiming at accurately estimating theheat loss coefficient (HLC) of a building.Whilst sensor technology and algorithms areavailable to quantify the contribution of theheating system, solar gains and electricalappliances, the accurate estimation of thesensible heat gain from occupants ischallenging due to its stochastic character.
MULTIFILE
Background. Deviant shoulder girdle movement is suggested as an eminent factor in the etiology of shoulder pain. Reliable measurements of shoulder girdle kinematics are a prerequisite for optimizing clinical management strategies. Purpose. The purpose of this study was to evaluate the reliability, measurement error, and internal consistency of measurements with performance-based clinical tests for shoulder girdle kinematics and positioning in patients with shoulder pain. Data Sources. The MEDLINE, Embase, CINAHL, and SPORTDiscus databases were systematically searched from inception to August 2015. Study Selection. Articles published in Dutch, English, or German were included if they involved the evaluation of at least one of the measurement properties of interest. Data Extraction. Two reviewers independently evaluated the methodological quality per studied measurement property with the 4-point-rating scale of the COSMIN (COnsensus-based Standards for the selection of health Measurement INstruments) checklist, extracted data, and assessed the adequacy of the measurement properties. Data Synthesis. Forty studies comprising more than 30 clinical tests were included. Actual reported measurements of the tests were categorized into: (1) positional measurement methods, (2) measurement methods to determine dynamic characteristics, and (3) tests to diagnose impairments of shoulder girdle function. Best evidence synthesis of the tests was performed per measurement for each measurement property. Limitations. All studies had significant limitations, including incongruence between test description and actual reported measurements and a lack of reporting on minimal important change. In general, the methodological quality of the selected studies was fair to poor. Conclusions. High-quality evidence indicates that measurements obtained with the Modified Scapular Assistance Test are not reliable for clinical use. Sound recommendations for the use of other tests could not be made due to inadequate evidence. Across studies, diversity in description, performance, and interpretation of similar tests was present, and different criteria were used to establish similar diagnoses, mostly without taking into account a clinically meaningful context. Consequently, these tests lack face validity, which hampers their clinical use. Further research on validity and how to integrate a clinically meaningful context of movement into clinical tests is warranted.
LINK
This report summarizes the result of the comparison between 4 weather stations: 2 Kestrels 5400 Heat Stress and 2 Davis Vantage Pro2. The measurements were performed from the 08/04/2019 to 11/04/2019 on the rooftop of the Benno Premselahuis from the Hogeschool van Amsterdam.
MULTIFILE
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
The AR in Staged Entertainment project focuses on utilizing immersive technologies to strengthen performances and create resiliency in live events. In this project The Experiencelab at BUas explores this by comparing live as well as pre-recorded events that utilize Augmented Reality technology to provide an added layer to the experience of the user. Experiences will be measured among others through observational measurements using biometrics. This projects runs in the Experience lab of BUas with partners The Effenaar and 4DR Studio and is connected to the networks and goals related to Chronosphere, Digireal and Makerspace. Project is powered by Fieldlab Events (PPS / ClickNL)..