The Ecocentric and Anthropocentric Attitudes toward the Sustainable Development (EAATSD) scale measures environmental concern in relation to sustainable development. This article will discuss how this scale was tested with three groups of Dutch higher education students. Findings demonstrate that anthropocentric and ecocentric values are independent of the students’ chosen course of study, suggesting that students attracted by the ‘sustainable development’ course title do not necessarily associate ‘sustainability’ with ecocentric aims. This article discusses why ecocentric values are beneficial to the objective of a sustainable society and proposes ways forward in which these values can be enhanced in learners. https://doi.org/10.3390/educsci7030069 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Innovation is crucial for higher education to ensure high-quality curricula that address the changing needs of students, labor markets, and society as a whole. Substantial amounts of resources and enthusiasm are devoted to innovations, but often they do not yield the desired changes. This may be due to unworkable goals, too much complexity, and a lack of resources to institutionalize the innovation. In many cases, innovations end up being less sustainable than expected or hoped for. In the long term, the disappointing revenues of innovations hamper the ability of higher education to remain future proof. Against the background of this need to increase the success of educational innovations, our colleague Klaartje van Genugten has explored the literature on innovations to reveal mechanisms that contribute to the sustainability of innovations. Her findings are synthesized in this report. They are particularly meaningful for directors of education programs, curriculum committees, educational consultants, and policy makers, who are generally in charge of defining the scope and set up of innovations. Her report offers a comprehensive view and provides food for thought on how we can strive for future-proof and sustainable innovations. I therefore recommend reading this report.
DOCUMENT
Adversarial thinking is essential when dealing with cyber incidents and for finding security vulnerabilities. Capture the Flag (CTF) competitions are used all around the world to stimulate adversarial thinking. Jeopardy-style CTFs, given their challenge-and-answer based nature, are used more and more in cybersecurity education as a fun and engaging way to inspire students. Just like traditional written exams, Jeopardy-style CTFs can be used as summative assessment. Did a student provide the correct answer, yes or no. Did the participant in the CTF competition solve the challenge, yes or no. This research project provides a framework for measuring the learning outcomes of a Jeopardy-style CTF and applies this framework to two CTF events as case studies. During these case studies, participants were tested on their knowledge and skills in the field of cybersecurity and queried on their attitude towards CTF education. Results show that the main difference between traditional written exam and a Jeopardy-style CTF is the way in which questions a re formulated. CTF education is stated to be challenging and fun because questions are formulated as puzzles that need to be solved in a gamified and competitive environment. Just like traditional written exams, no additional insight into why the participant thinks the correct answer is the correct answer has been observed or if the participant really did learn anything new by participating. Given that the main difference between a traditional written exam and a Jeopardy-style CTF is the way in which questions are formulated, learning outcomes can be measured in the same way. We can ask ourselves how many participants solved which challenge and to which measurable statements about “knowledge, skill and attitude” in the field of cybersecurity each challenge is related. However, when mapping the descriptions of the quiz-questions and challenges from the two CTF events as case studies to the NICE framework on Knowledge, Skills and Abilities in cybersecurity, the NICE framework did not provide us with detailed measurable statements that could be used in education. Where the descriptions of the quiz-questions and challenges were specific, the learning outcomes of the NICE framework are only formulated in a quite general matter. Finally, some evidence for Csíkszentmihályi’s theory of Flow has been observed. Following the theory of Flow, a person can become fully immersed in performing a task, also known as “being in the zone” if the “challenge level” of the task is in line with the person’s “skill level”. The persons mental state towards a task will be different depending on the challenge level of the task and required skill level for completing it. Results show that participants state that some challenges were difficult and fun, where other challenges were easy and boring. As a result of this9 project, a guide / checklist is provided for those intending to use CTF in education.
DOCUMENT
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.
The FlexEd project is intended as an extension of the Leisure Choices and Wellbeing (LCW) project which is now very concretely and definitively planned to run from November 2024 through January 2026. The LCW project is facilitated by the Academy for Leisure. The Leisure Choices and Wellbeing, The LCW project will use a weekly longitudinal questionnaire of 200 individuals (final sample after attrition) over 40 weeks to measure leisure activity planning, participation, and wellbeing. The three main aims of the project are to uncover the roles of 1) social interaction during leisure, 2) novelty/change in routine during leisure, and 3) leisure travel duration and frequency, in explaining individuals’ and families’ wellbeing. By measuring changes in these leisure activities week to week, it will be possible to uncover how development in leisure choices accrues to improved well-being over time. Societal issueFlexibility in the education calendar for better vacation impacts in society.Collaborative partnersCELTH, ANVR.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations