Fontys en Avans hebben in de afgelopen twee jaar onder meer laagdrempelige test- en onderzoeksmogelijkheden geboden, bijvoorbeeld in de vorm van afstudeerstages. Daarnaast hebben de beide kennisinstellingen een (regionaal) kennisnetwerk voor het MKB gefaciliteerd dat de mogelijkheid biedt om op nieuwe ontwikkelingen te anticiperen. Het is nu mei 2011 en het project loopt ten einde. In de afgelopen twee jaar is er veel bereikt: bedrijven en onderwijsorganisaties hebben elkaar gevonden, er is veel onderzoek gedaan naar nieuwe toepassingen van biopolymeren, aannames zijn getoetst en in het groeiende netwerk van producenten, leveranciers en consumenten van bioplastics is veel kennis gedeeld en uitgewisseld.
De overgang van traditionele textiel naar biotextiel kan omschreven worden als een paradigmaverandering, in grote lijnen parallel aan de komst van biotechnologie. Dit wordt vaak geassocieerd met begrippen als creatieve destructie, waarbij nieuwe innovatieve industrieën de bestaande achterhaald doen raken. Maar biopolymeren zijn er altijd al geweest. Wat opvalt, is hier niet het radicale van de verandering, maar de mogelijkheid om nieuwe technologieën en materialen toe te passen en te reageren op vragen van de markt en mondiale omstandigheden. In dit rapport wordt een overzicht gegeven van het gebruik van de meest voorkomende biopolymeren in geotextieltoepassingen, dus toepassingen in bijvoorbeeld de weg- en waterbouw of in de agro-industrie. Biopolymeren worden als volgt gedefinieerd: ‘polymeren die worden geproduceerd uit natuurlijke hernieuwbare grondstoffen’. Dit zijn bijvoorbeeld: • Duurzame beschikbare (delen van) planten en dieren (ook aquatische biomassa). • Primaire residuen (bermgras, houtafval, ...). • Secundaire residuen (bietenpulp, bierborstel, ...). • Tertiaire residuen (dierlijk vet, GFT, ...). Biobased houdt in dat een polymeer uit natuurlijke, dierlijke of hernieuwbare grondstof bestaat. Dit geeft een grotere onafhankelijkheid van de klassieke grondstofproducenten, zoals de aardolie- en gasproducenten. Echter moet bedacht worden dat er weer een afhankelijkheid van andere grondstofproducenten kan ontstaan. Natuurlijke grondstoffen zijn de meest bekende. Er is bijvoorbeeld cellulose uit katoen, vlas van de vlasplant of brandnetelvezel van de brandnetel. Onder dierlijke grondstoffen verstaan we onder andere chitosan uit schaaldieren. Een hernieuwbare grondstof is bijvoorbeeld zetmeel/suiker voor PLA (polymelkzuur. Deze biopolymeren worden besproken om duidelijk te maken welke soorten wel of niet geschikt zijn voor verschillende toepassingen in geotextiel. Een verder onderscheid wordt wel gemaakt op basis hun ‘end of life’: biodegradeerbaar en composteerbaar. Een materiaal is biodegradeerbaar wanneer de afbraak het gevolg is van de actie van micro-organismen (zwammen, bacteriën), waardoor het materiaal uiteindelijk wordt omgezet in water, biomassa, CO2 en/of methaan, ongeacht de tijd die hiervoor nodig is. Composteerbaar wil zeggen dat stoffen worden afgebroken bij het composteren met een snelheid die vergelijkbaar is met die van andere bekende composteerbare materialen (bijvoorbeeld groenafval). Met andere woorden: een materiaal is composteerbaar wanneer het afbraakproces compatibel is met de omgevingsomstandigheden van een huishoudelijke of industriële composteerinstallatie, zoals temperatuur, vochtigheid en tijd. Hierbij dient te worden opgemerkt dat composteerbare materialen biodegradeerbaar zijn, maar niet alle biodegradeerbare materialen zijn composteerbaar. In de geotextiel bestaan twee grote verschillen in toepassingen. De permanente of houdbare toepassingen en de degradeerbare toepassingen. Oeverbescherming is een goed voorbeeld van een degradeerbaar product. Een nieuwe oever bestaat voor een groot deel uit los zand. Om ervoor te zorgen dat de oever door bijvoorbeeld erosie niet verdwijnt, worden er kokosmatten gebruikt voor versteviging. Op deze kokosmatten vormt zich op den duur een nieuw ecosysteem. De kokosmatten zullen dan na een aantal jaren composteren zonder vervuilende grondstoffen in de aarde achter te laten. Maar in bijvoorbeeld wegen of bij viaducten, wordt versteviging toegepast met als doel langdurig functiebehoud van het polymeer. In dit rapport is een tabel opgenomen met daarin de behandelde biopolymeren met de belangrijkste eigenschappen. Zo kan bijvoorbeeld een geotextiel producent de meest optimale keuze maken voor de grondstoffen voor haar producten. Ook is een figuur opgenomen, waarin een verzameling aan geotoepassingen en biopolymeren (met degradeerbaar/biobased labels) in een overzicht is gezet. Biopolymeren kunnen,
MULTIFILE
“Duurzaamheid”, het is één van de termen die tegenwoordig niet meer weg te denken zijn uit het nieuws, de reclames en vele netwerkbijeenkomsten. Duurzaam ondernemen, duurzaam wonen, duurzame energievoorziening, duurzame producten, gaat er een dag aan ons voorbij dat we niet worden herinnerd aan het belang van een duurzame levensstijl om er voor te zorgen dat deze wereld ook voor onze kinderen en achterkleinkinderen nog een fijne natuurlijke wereld mag zijn om in te leven? Op het gebied van duurzame materialen kregen zo biopolymeren en gerecyclede kunststoffen de aandacht. In dit boekje worden biopolymeren belicht. Daarbij wordt vooral ook aandacht besteed aan de discussie of biopolymeren nou wel echt zo milieuvriendelijk en duurzaam zijn als dat ze lijken. Dit boekje is opgesteld om ontwerpers en bedrijven die zich bezig houden met productontwikkeling praktische (eerste) informatie te bieden over biopolymeren. Naast definities, voor- en nadelen, technieken, toepassingsgebieden, soorten, eigenschappen en regelgeving zal ook een roadmap gegeven worden die inzicht geeft in welke biopolymeren er al zijn en welke er nog verwacht kunnen worden.
MULTIFILE
In de laatste jaren zijn er veel biocomposieten ontwikkeld, gebaseerd op vezelversterkte biologisch afbreekbare polymeren. Polymelkzuur (polylactic acid, PLA) is een van de meest onderzochte biobased matrices door de competitieve prijs, afbreekbaarheid en de goede verwerkings eigenschappen. BioBase Pack uit Heinkenszand, Appkuns uit Oosterhout en M-plastics zijn actief in de innovatieve produktie en verwerking van biocomposieten. Het doel van dit project is om op een vernieuwende manier biocomposieten te benutten, niet alleen door het veranderen van de mechanische of thermische eigenschappen van het polymeer, maar ook om het design van het eindproduct zo te ontwikkelen dat er visueel aantrekkelijke en functioneel verbeterde en dan vooral 100 % biobased producten geproduceerd kunnen worden. Samen met Avans/CoEBBE heeft Biobase Pack binnen een eerdere samenwerking ontdekt dat bepaalde vezels goed kunnen worden toegepast om biopolymeren een 100 % biobased kleuring en daarmee een meer attractieve visuele uitstraling te geven. Het onderzoek richtte zich op de verwerking van de gekleurde vezels in het biobased Hemcell polymeer matrix. In het onderzoek werd zo de mogelijkheid om 100 % biobased kleurstoffen te gebruiken aangetoond. Maar op deze manier werd ook door specifieke kleureffecten in combinatie met het gebruik van vezels een andere design aan het Hemcell polymeer gegeven. Door het onderzoek zijn echter ook een aantal vervolg vragen ontstaan, vooral betreffende de effecten van het verwerkingsproces, de eigenschappen van de nieuwe materialen en de toepassingsmogelijkheden. Deze vragen zullen in dit Biobased Betaald project verder onderzocht worden. Het doel van dit project is om een innovatieve 100% biobased festival munt te produceren o.b.v. het toepassen van gekleurde natuurlijke vezels in biobased polymeren. De evaluatie en selectie van de mogelijke vezels, verwerking in het productie en de mogelijke speciale kleur effecten (design en functionaliteit) zijn de afgeleide onderzoeksdoelen van deze studie.
De tentdoeken die gebruikt worden voor overkappingen en podia op evenementen en festivals zijn gemaakt van katoen of van uit aardolie geproduceerde kunststoffen zoals polyethyleen, polyester en nylon. Vaak bestaat tentdoek uit een geweven tussenlaag van polymeervezels om de krachten te verdelen en een (dubbele) folie-laag om het tentdoek winddicht, weer en vuil-bestendig te maken. De festivalorganisatoren willen gebruik gaan maken van meer duurzame en recyclebare materialen. Het bedrijf Tentech, dat gespecialiseerd is in het ontwerpen van overkappingen met tentdoek, ziet net als de MKB partners HemCell en Impershield die actief zijn op het gebied van biobased producten, kansen om nieuwe duurzame materialen voor tentdoek te ontwikkelen die op een creatieve manier kunnen worden toegepast voor uiteenlopende toepassingen. Avans wil de projectpartners ondersteunen in hun ambitie om tot een 100% biobased tentdoek te ontwikkelen. De creatieve industrie loopt vaak voorop bij het ontwikkelen van innovatieve en duurzame producten die vervolgens ook in andere sectoren kunnen worden toegepast. Het project leidt tot meer kennis over duurzame materialen voor tentdoek en nieuwe ontwerpmogelijkheden van dit tentdoek door er bijvoorbeeld kleurenprints op aan te brengen met behulp van natuurlijke materialen of nieuwe objecten op te bevestigen. Er worden meerdere proof of concepts gerealiseerd, die ook worden getest. Het project draagt daarmee ook bij aan de behoefte van de creatieve sector om meer met biobased en circulaire producten te werken.
Aanleiding 3D-printen krijgt veel media-aandacht door de haast onbegrensde ontwerpmogelijkheden. De behaalde printsuccessen in de kunst en medische en industriële sector zorgen voor hoge verwachtingen. Niet alleen in de consumentenmarkt, maar ook in de sector voor functionele biomedische producten. De successen zijn echter grotendeels gebaseerd op metalen vormdelen en levend weefsel. Van polymere objecten zijn de printsnelheid en kwaliteit daarentegen ondermaats, zo stellen printerproducenten, dienstverleners en producenten van medische implantaten. Om 3D-printtechnieken naar een hoger plan te tillen, zijn polymeren nodig waarmee men functionele onderdelen met voldoende mechanische eigenschappen en langdurige vormvastheid kan printen binnen een acceptabel tijdspad. Doelstelling Hoofddoel van het project is de ontwikkeling van een selectie polymere materialen die optimaal presteren als filament ('3D-printgrondstof'). Het projectteam onderzoekt eerst de succesfactoren van meestgebruikte polymeer in 3D-printers: Polimelkzuur (PLA). Vervolgens wordt onderzocht hoe de PLA's verbeterd kunnen worden met secundaire hulpmiddelen, zoals kiemvormers en materiaalspecifieke vloeicondities. Daarna worden de moleculaire randvoorwaarden voor polyamiden en polyurethanen (twee veelbelovende polymeren) in filamentproductie onderzocht en naast de moleculaire randvoorwaarden voor 3D-printen gelegd: sluiten deze randvoorwaarden op elkaar aan of zijn er compromissen nodig? En hoe presteren op maat gemaakte polymeren? Beoogde resultaten Het programma beoogt drie resultaten: 1) Het ontwikkelen van hoogwaardige polymeren voor 3D-printen. Hiervoor moeten de nu losstaande processen van de waardeketen verbonden worden door professionals uit alle domeinen bij het project te betrekken. 2) Het implementeren van de verworven kennis in het onderwijs via mkb-stages bij consortiumpartners en Communities for Development (CfD's). Binnen een CfD werken studenten samen met een ervaren professional uit het bedrijfsleven. De professionals worden gecoacht door senior docent-onderzoekers van de opleiding Applied Sciences. Daarnaast zullen ook studenten en docenten van andere opleidingen van Zuyd Hogeschool, materiaaltechnologie-studenten van Fontys Leeuwenborgh (mbo) en studenten van Universiteit Maastricht participeren in de CfD's. Jaarlijks zullen minimaal 8 studenten deelnemen aan het onderzoek. 3) Verspreiding van de kennis via interne en externe nieuwsbrieven, 2 events en via de netwerken en websites van de deelnemende partijen.