Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems. The papers starts with a proposition that envisions reconfigurable systems that work together autonomously to create Manufacturing as a Service (MaaS). It introduces a number of problems in this area and shows the requirements for an architecture that can be the main research platform to solve a number of these problems, including the need for safe and flexible system behaviour and the ability to reconfigure with limited interference to other systems within the manufacturing environment. The paper highlights the infrastructure and architecture itself that can support the requirements to solve the mentioned problems in the future. A concept system named Grid Manufacturing is then introduced that shows both the hardware and software systems to handle the challenges. The paper then moves towards the design of the architecture and introduces all systems involved, including the specific hardware platforms that will be controlled by the software platform called REXOS (Reconfigurable EQuipletS Operating System). The design choices are provided that show why it has become a hybrid platform that uses Java Agent Development Framework (JADE) and Robot Operating System (ROS). Finally, to validate REXOS, the performance is measured and discussed, which shows that REXOS can be used as a practical basis for more specific research for robust autonomous reconfigurable systems and application in industry 4.0. This paper shows practical examples of how to successfully combine several technologies that are meant to lead to a faster adoption and a better business case for autonomous and reconfigurable systems in industry.
This paper essentially presents an exploration of the relationship between organizational culture and information systems management. Three contributions are offered namely the findings of a study of the organizational culture and information management competencies of five organizations in the Netherlands, with particular reference to the reliability of the measurements tool that was used, as well as an exploratory study of the relationship between organizational culture and the ability of an organization to manage its information systems. A brief review of the literature reveals that these two concepts in combination have been studied extensively, but that their conceptualization are somewhat fragmented in nature. In an effort to study the relationship using a more inclusive frame of reference the paper then presents a description of two models that were used the foundation for the design of a measurement tool to investigate the topic. The results provides a description of the general culture and information systems management abilities of the organizations and also suggest that the measurement tool is indeed reliable. Further analysis reveals that several variables from within each of the two main concepts, organizational culture and information systems management, are correlated.
Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to improve the logistic processes and are not commonly used within the hardware control loop. This paper introduces a case study on flexible and hybrid software architecture, which uses prototype manufacturing machines called equiplets. These systems should be applicable for the industry and are able to dynamically adapt to changes in the product as well as changes in the manufacturing systems. This is done by creating self-configurable machines which use intelligent control software, based on agent technology and computer vision. The requirements and resulting technologies are discussed using simple reasoning and analysis, leading to a basic design of a software control system, which is based on a hybrid distributed control system