Thermal disinfection is probably the oldest water treatment method ever used. Similarly to other disinfection processes, it targets the inactivation of pathogenic (micro)organisms present in water, wastewater and other media. In this work, a pilot-scale continuous-flow thermal disinfection system was investigated using highly contaminated hospital wastewater as influent without any pre-treatment step for turbidity removal. The results proved that the tested system can be used with influent turbidity as high as 100 NTU and still provide up to log 8 microbial inactivation. Further results have shown energy consumption comparable to other commercially available thermal disinfection systems and relatively low influence on the investigated physical–chemical parameters.
MULTIFILE
Fish and vegetable protein sources are relatively underutilized for human consumption in comparison to meat, dairy and egg protein sources. Only part of the available fish proteins is used: fish is to small for human consumption and fish has a high proportion of by-products, up to 50% of fish weight is not used. This project aims to develop products and processes for creating healthy high valued consumer products based upon vegetable proteins and fish/crustacean proteins from by-products or from neglected fish. Three innovative processes are developed:1) Iso-electric solubilization and precipitation of fish/crustacean proteins from by-products,2) Networked vegetable/fish protein textures based upon low moisture extrusion processes3) Fibrous vegetable/fish protein textures produced with high moisture extrusion processes.Two innovative processes are applied:1) Food products with water-oil-water emulsions with isolated fish proteins2) Food products with sous-vide prepared fish fillets in semi industrial context.Different consumer product prototypes will be developed like fish nuggets, fish flakes and fish crackers.The Nuprotex project created successfully two new processes. Hanzehogeschool developed the process for fish protein isolation based upon iso electric solubilization and precipitation. With this process it was possible to recover about 15% weight of additional proteins from fish by-products. Please be aware that the yield of fish fillets from the fish is only about 30% of fish weight. So this is an important increase in food grade proteins! These Isolated Fish Proteins are successfully converted into several consumer prototype products like multiple emulsions for savory liquid products and fish cake/cracker applications. A sous-vide cooking process for fish fillets was developed with respect to microbial safety. It was shown that a microbial safe route could be developed, however further research is necessary to confirm these preliminary results.DIL has developed successfully an high moisture extrusion process for isolated fish proteins, grinded fish by products and vegetable proteins. This semi-finished product is successfully applied by for developing deep fried fish nuggets and fish burgers. DIL produced fish pellets which are suitable for applications as fish feed as is demonstrated in actual trials. Further research must demonstrate the quality of the feed product in actual growth experiments with fish.This project has clearly demonstrated that it is possible to produce with fish by-products added value consumer products. A possible increase of food-grade fish protein of about 15% on fresh weight base of processed fish is possible.
To treat microbial infections, antibiotics are life-saving but the increasing antimicrobial resistance is a World-wide problem. Therefore, there is a great need for novel antimicrobial substances. Fruit and flower anthocyanins have been recognized as promising alternatives to traditional antibiotics. How-ever, for future application as innovative alternative antibiotics, the full potential of anthocyanins should be further investigated. The antimicrobial potential of anthocyanin mixtures against different bacterial species has been demonstrated in literature. Preliminary experiments performed by our laboratories, using grape, rose and red cabbage anthocyanins against S. aureus and E. coli confirmed the antimicrobial potential of these substances. Hundreds of different anthocyanin entities have been described. However, which of these entities hold antimicrobial effects is currently unknown. Our preliminary data show that an-thocyanins extracted from grape, rose and red cabbage contain different collections of anthocyanin entities with differential antimicrobial efficacies. Our focus is on the extraction and characterization of anthocyanins from various crop residues. Grape peels are residues in the production of wine, while red rose and tulip leaves are residues in the production of tulip bulbs and regular horticulture. The presence of high-grade substances for pharmacological purposes in these crops may provide an innovative strategy to add value to other-wise invaluable crop residues. This project will be performed by the collaborative effort of our institute together with the Medi-cal Microbiology department of the University Medical Center Groningen (UMCG), 'Wijnstaete', a small-scale wine-producer (Lemelerveld) and Imenz Bioengineering (Groningen), a company that develops processes to improve the production of biobased chemicals from waste products. Within this project, we will focus on the antimicrobial efficacy of anthocyanin-mixtures from sources that are abundantly and locally available as a residual waste product. The project is part of a larger re-search effect to further characterize, modify and study the antimicrobial effects of specific anthocy-anin entities.
In the context of global efforts to increase sustainability and reduce CO2 emissions in the chemical industry, bio-based materials are receiving increasing attention as renewable alternatives to petroleum-based polymers. In this regard, Visolis has developed a bio-based platform centered around the efficient conversion of plant-derived sugars to mevalonolactone (MVL) via microbial fermentation. Subsequently, MVL is thermochemically converted to bio-monomers such as isoprene and 3-methyl-1,5-pentane diol, which are ultimately used in the production of polymer materials. Currently, the Visolis process has been optimized to use high-purity, industrial dextrose (glucose) as feedstock for their fermentation process. Dutch Sustainable Development (DSD) has developed a direct processing technology in which sugar beets are used for fermentation without first having to go through sugar extraction and refinery. The main exponent of this technology is their patented Betaprocess, in which the sugar beet is essentially exposed to heat and a mild vacuum explosion, opening the cell walls and releasing the sugar content. This Betaprocess has the potential to speed up current fermentation processes and lower feedstock-related costs. The aim of this project is to combine aforementioned technologies to enable the production of mevalonolactone using sucrose, present in crude sugar beet bray after Betaprocessing. To this end, Zuyd University of Applied Sciences (Zuyd) intends to collaborate with Visolis and DSD. Zuyd will utilize its experience in both (bio)chemical engineering and fermentation to optimize the process from sugar beet (pre)treatment to product recovery. Visolis and DSD will contribute their expertise in microbial engineering and low-cost sugar production. During this collaboration, students and professionals will work together at the Chemelot Innovation and Learning Labs (CHILL) on the Brightlands campus in Geleen. This collaboration will not only stimulate innovation and sustainable chemistry, but also provides starting professionals with valuable experience in this expanding field.
The valorization of biowaste, by exploiting side stream compounds as feedstock for the sustainable production of bio-based materials, is a key step towards a more circular economy. In this regard, chitin is as an abundant resource which is accessible as a waste compound of the seafood industry. From a commercial perspective, chitin is chemically converted into chitosan, which has multiple industrial applications. Although the potential of chitin has long been established, the majority of seafood waste containing chitin is still left unused. In addition, current processes which convert chitin into chitosan are sub-optimal and have a significant impact on the environment. As a result, there is a need for the development of innovative methods producing bio-based products from chitin. This project wants to contribute to these challenges by performing a feasibility study which demonstrates the microbial bioconversion of chitin to polyhydroxyalkanoates (PHAs). Specifically, the consortium will attempt to cultivate and engineer a recently discovered bacterium Chi5, so that it becomes able to directly produce PHAs from chitin present in solid shrimp shell waste. If successful, this project will provide a proof-of-concept for a versatile microbial production platform which can contribute to: i) the valorization of biowaste from the seafood industry, ii) the efficient utilization of chitin as feedstock, iii) the sustainable and (potentially low-cost) production of PHAs. The project consortium is composed of: i) Van Belzen B.V., a Dutch shrimp trading company which are highly interested in the valorization of their waste streams, hereby making their business model more profitable and sustainable. ii) AMIBM, which have recently isolated and characterized the Chi5 marine-based chitinolytic bacterium and iii) Zuyd, which will link aforementioned partners with students in creating a novel collaboration which will stimulate the development of students and the translation of academic knowledge to a feasible application technology for SME’s.