LINK
Currently, there is no method available that can systematically score the available ecosystem services in streets or street segments in suburban districts. In this study, different climate adaptation measures and their ecosystem services were categorized into green, blue, and grey categories and weight was given to each category based on their impact on the microclimate. This study took place in the Hillesluis district in the city of Rotterdam and the Paddepoel district in the city of Groningen. In Rotterdam, 21 streets, composed of 42 street segments, were assessed. In Groningen, 17 streets, composed of 45 street segments, were assessed. The available ecosystem services of each street segment were scored from 0–100. The scorecard method that was developed and tested during this study provided insight in the variation of available ecosystem services of streets and street segments. Individual street scores were very low in the city of Rotterdam and ranged between 3 and 50, with the average score for the street segments of 29. In Groningen, the scores were considerably higher with a range between 23 and 70, with an average score of 47 per street segment. The presence of larger green trees, front yards, and façade gardens in the green category are the most distinctive variable, while adaptation measures in the blue category were absent in both cities. The scorecard proved to be very useful in the adaptation labeling of street segments and entire streets. After assessing a neighborhood, the least adaptive streets can be identified relatively easy. Based on the score a label can be given between A+++ and G. The scorecard informs residents and decision makers about which streets are most adaptive and which streets have an adaptation potential. The method can easily be duplicated and used by local governments and community groups to have better insight in the level of climate adaptation of their street. Labels for entire streets can be used to create awareness and encourage residents to take action and expand the number of climate adaptation measures in their street.
DOCUMENT
Mattresses for the healthcare sector are designed for robust use with a core foam layer and a polyurethane-coated polyester textile cover. Nurses and surgeons indicate that these mattresses are highly uncomfortable to patients because of poor microclimatic management (air, moisture, temperature, friction, pressure regulation, etc) across the mattress, which can cause pressure ulcers (in less than a day). The problem is severe (e.g., extra recovery time, medication, increased risk, and costs) for patients with wounds, infection, pressure-sensitive decubitus. There are around 180,000 waterproof mattresses in the healthcare sector in the Netherlands, of which yearly 40,000 mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these functional mattresses from 180,000 to 400,000 in the next 10 years in the healthcare sector. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials by 2030. As of January 1, 2022, mattress manufacturers and importers are obliged to pay a waste management contribution. Within the scope of this project, we will design, develop, and test a circular & functional mattress for the healthcare (cure & care) sector. The team of experts from knowledge institutes, SMEs, hospital(s), branch-organization joins hands to design and develop a functional (microclimate management, including ease of use for nurses and patients) mattress that deals with uncomfortable sleeping and addresses the issue of pressure ulcers thereby overall accelerating the healing process. Such development addresses the core issue of circularity. The systematic research with proper demand articulation leads to V-shape verification and validation research methodology. With design focus and applied R&D at TRL-level (4-6) is expected to deliver the validated prototype(s) offering SMEs an opportunity to innovate and expand their market. The knowledge will be used for dissemination and education at Saxion.
Living walls are increasingly becoming tools for green climate adaptation in the urban context, but distribution efforts are dampened by high investment and operational costs. Those costs are derived mainly from designing and manufacturing unique equipment for such new projects. A system using wastewater could relieve some of these costs by decreasing their irrigation and fertigation needs. Muuras is developing helophyte filters integrated into living wall systems that can readily be attached to any wall surface, with the ultimate purpose of local water recycling. Additionally, based on the fact that Muuras is a pre-engineered company, their product is modular, which means that a considerable advantage is recognized regarding the decreased capital cost. To realize scalable implementation of such a system, research with regards to the purification capabilities of lightweight substrates and small wetland plant species is imperative. In SoW & FloW, the NHL Stenden Water Technology Professorship proposes a collaboration between two SME’s (Muuras, Greenwave Systems) and a company (DeSaH), to evaluate a selection of substrates and endemic plant species based on their capability to use domestic wastewater as an irrigation source.