Global society is confronted with various challenges: climate change should be mitigated, and society should adapt to the impacts of climate change, resources will become scarcer and hence resources should be used more efficiently and recovered after use, the growing world population and its growing wealth create unprecedented emissions of pollutants, threatening public health, wildlife and biodiversity. This paper provides an overview of the challenges and risks for sewage systems, next to some opportunities and chances that these developments pose. Some of the challenges are emerging from climate change and resource scarcity, others come from the challenges emerging from stricter regulation of emissions. It also presents risks and threats from within the system, next to external influences which may affect the surroundings of the sewage systems. It finally reflects on barriers to respond to these challenges. http://dx.doi.org/10.13044/j.sdewes.d6.0231 LinkedIn: https://www.linkedin.com/in/sabineeijlander/ https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
Rationale: The number of obese older adults with diabetes type 2 is increasing worldwide. Weight loss treatment in this group seems beneficial for cardio-metabolic and other health outcomes, but it might reduce muscle mass and bone mineral density (BMD). The association between obesity and BMD is controversial, and the role of muscle mass and dietary protein intake is not fully clear. This study explores the association between body weight, muscle mass, dietary protein intake, and physical activity level on BMD in obese older adults with diabetes type 2. Methods: For this cross-sectional analysis we used baseline data of a 13-week randomized trial evaluating the effect of a multi-modal intervention on muscle preservation and insulin sensitivity during a weight loss program in obese older adults (55-80y) with diabetes type 2 (PROBE). Body weight was measured using a calibrated scale (Life Measurement), appendicular lean mass (ALM) was used as a proxy for muscle mass and was measured by dual-energy X-ray absorptiometry (DXA, Hologic Discovery A), dietary protein intake was estimated by a 3-day food record, Physical Activity Level (PAL) was estimated by a 3-day activity record, and hip BMD was assessed by DXA. After determination of Pearson’s correlation coefficients for body weight, ALM, protein intake, and PAL with BMD, linear regression analysis was performed with significantly correlating determinants (body weight [kg], ALM [kg], protein intake [g/kg/d], and/or PAL [-]) and hip BMD (g/cm2) as outcome variable. Results: Mean age of the 122 included subjects was 67±6y, with a BMI of 33±4kg/m2. 65% of subjects were male. Body weight and ALM correlated significantly with BMD (r=0.34, p<0.001; r=0.43, p<0.001) whereas protein intake and PAL did not (r=0.02, p=0.84; r=0.005, p=0.95). Linear regression analysis with the two determinants body weight and ALM identified ALM as being significantly associated with BMD, whereas body weight was not. Beta for ALM was +0.011 g/cm2 (95% CI: 0.004 – 0.017; p<0.01), meaning that a 1 kg increase in ALM is associated with a +0.011 g/cm2 increase in BMD. Conclusion: In this explorative cross-sectional analysis appendicular muscle mass is positively associated with BMD, rather than body weight, protein intake, and physical activity level.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.
De bouwsector heeft een flinke opgave vanuit zowel het Grondstoffenakkoord als het Klimaatakkoord, vanwege het grote aandeel minerale stromen dat in de sector wordt gebruikt met bijbehorende CO2-emissie. Vanuit een circulaire economie neemt de vraag naar hernieuwbare materialen toe, waarbij eigenschappen van de producten dienen te voldoen aan normen en eisen vanuit de markt. Dit betreffen bijvoorbeeld eisen ten aanzien van sterkte, afwerking, brandveiligheid en samenstelling. Maar ook steeds vaker worden eisen gesteld ten aanzien van een duurzame productieketen en mogelijkheden voor hergebruik. De ontwikkeling van materialen en producten waarbij mineraal gewonnen grondstoffen en/of grondstoffen met een hoge CO2-emissie (zoals cement) worden vervangen door duurzaam herwonnen grondstoffen heeft sterk de aandacht. Vanuit de watersector kunnen aanzienlijke volumes grondstoffen worden herwonnen. Echter, voor veel grondstoffen geldt dat de kennis en ervaring daarvan met de toepassing in de bouwsector nog gering is. Saxion heeft vanuit de markt de vraag ontvangen nader onderzoek te doen naar de ontwikkeling van een duurzaam en biobased bouwmateriaal op basis van biomassa (m.n. hennepvezel en/of herwonnen kurk), herwonnen kalk (grondstof vanuit de drinkwaterwereld) en de nieuwe grondstof Kaumera (grondstof vanuit de afvalwaterzuivering). Dit materiaal kan in potentie worden toegepast als pleisterwerk, vloerafwerking en als basis voor bouwblokken. Dit als vervanger van stucwerk, nieuwe afwerking vloeren en mogelijk vervanger van beton, kalkzandsteen of als alternatief op kalkhennep, waarin tot op heden mineraal gewonnen (hydraulische - NHL) kalk wordt gebruikt.
In the Netherlands, the theme of transitioning to circular food systems is high on the national agenda. The PBL Netherlands Environmental Assessment Agency has stressed that commuting to circular food chains requires a radical transformation of the food chain where (a) natural resources must be effectively used and managed (soil, water, biodiversity, minerals), (b) there must be an optimum use of food by reducing (food) waste . . ., (c) less environmental pressure, and (d) an optimum use of residue streams. The PBL also recognizes that there should be room for tailored solutions and that it is important to establish a benchmark, to be aware of impacts in the production chain and the added value of products. In the line of circular food systems, an integrated nature-inclusive circular farming approach is needed in order to develop a feasible resource-efficient and sustainable business models that brings shared value into the food chain while invigorating the rural areas including those where agricultural vacancy is occurring. Agroforestry is an example of an integrated nature-inclusive circular farming. It is a multifunctional system that diversifies and adapts the production while reducing the carbon footprint and minimizing the management efforts and input costs; where trees, crops and/or livestock open business opportunities in the food value chains as well as in the waste stream chains. To exploit the opportunities that agroforestry as an integrated resource-efficient farming system adds to the advancement towards (a) valuable circular short food chains, (b) nature-based entrepreneurship (nature-inclusive agriculture), and (c) and additionally, the re-use of abandoned agricultural spaces in the Overijssel province, this project mobilizes the private sector, provincial decision makers, financers and knowledge institutes into developing insights over the feasible implementation of agroforestry systems that can bring economic profit while enhancing and maintaining ecosystem services.