Abstract Business Process Management (BPM) is an important discipline for organizations to manage their business processes. Research shows that higher BPM-maturity leads to better process performance. However, contextual factors such as culture seem to influence this relationship. The purpose of this paper is to investigate the role of national culture on the relationship between BPM-maturity and process performance. A multiple linear regression analysis is performed based on data from six different countries within Europe. Although the results show a significant relationship between BPM-maturity and process performance, no significant moderation effect of national culture has been found. The cultural dimension long term orientation shows a weak negative correlation with both BPM-maturity and process performance. Through a post-hoc moderation analysis on each dimension of BPM-maturity, we further find that long term orientation negatively moderates the relationship between process improvement and process performance. Three other moderation effects are also discovered. The results of this study contribute to insights into the role of culture in the field of BPM.
MULTIFILE
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
Crime script analysis as a methodology to analyse criminal processes is underdeveloped. This is apparent from the various approaches in which scholars apply crime scripting and present their cybercrime scripts. The plethora of scripting methods raise significant concerns about the reliability and validity of these scripting studies. In this methodological paper, we demonstrate how object-oriented modelling (OOM) could address some of the currently identified methodological issues, thereby refining crime script analysis. More specifically, we suggest to visualise crime scripts using static and dynamic modelling with the Unified Modelling Language (UML) to harmonise cybercrime scripts without compromising their depth. Static models visualise objects in a system or process, their attributes and their relationships. Dynamic models visualise actions and interactions during a process. Creating these models in addition to the typical textual narrative could aid analysts to more systematically consider, organise and relate key aspects of crime scripts. In turn, this approach might, amongst others, facilitate alternative ways of identifying intervention measures, theorising about offender decision-making, and an improved shared understanding of the crime phenomenon analysed. We illustrate the application of these models with a phishing script.
MULTIFILE
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.