Objective This study aims to identify determinants of dietary behaviour in wheelchair users with spinal cord injury or lower limb amputation, from the perspectives of both wheelchair users and rehabilitation professionals. The findings should contribute to the field of health promotion programs for wheelchair users. Methods Five focus groups were held with wheelchair users (n = 25), and two with rehabilitation professionals (n = 11). A thematic approach was used for data analysis in which the determinants were categorized using an integrated International Classification of Functioning, Disability and Health and Attitude, Social influence and self-Efficacy model. Results Reported personal factors influencing dietary behaviour in wheelchair users were knowledge, boredom, fatigue, stage of life, habits, appetite, self-control, multiple lifestyle problems, intrinsic motivation, goal setting, monitoring, risk perception, positive experiences, suffering, action planning, health condition, function impairments, attitude and self-efficacy. Reported environmental factors influencing dietary behaviour in wheelchair users were unadjusted kitchens, monitoring difficulties, eating out, costs, unfavourable food supply, nutrition education/counselling, access to simple healthy recipes, eating together, cooking for others, and awareness and support of family and friends. Conclusions Important modifiable determinants of dietary behaviour in wheelchair users that might be influenced in lifestyle interventions are knowledge, fatigue, habits, self-control, intrinsic motivation, risk perception, attitude and self-efficacy. It is recommended to involve relatives, since they appear to significantly influence dietary behaviour.
Algorithmic curation is a helpful solution for the massive amount of content on the web. The term is used to describe how platforms automate the recommendation of content to users. News outlets, social networks and search engines widely use recommendation systems. Such automation has led to worries about selective exposure and its side effects. Echo chambers occur when we are over-exposed to the news we like or agree with, distorting our perception of reality (1). Filter bubbles arise where the information we dislike or disagree with is automatically filtered out – narrowing what we know (2). While the idea of Filter Bubbles makes logical sense, the magnitude of the "filter bubble effect", reducing diversity, has been questioned [3]. Most empirical studies indicate that algorithmic recommendations have not locked large audience segments into bubbles [4]. However, little attention has been paid to the interplay between technological, social, and cognitive filters. We proposed an Agent-based Modelling to simulate users' emergent behaviour and track their opinions when getting news from news outlets and social networks. The model aims to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions can mitigate the effect. Agent-based models simulate the behaviour of multiple individual agents forming a larger society. The behaviour of the individual agents can be elementary, yet the population's behaviour can be much more than the sum of its parts. We have designed different scenarios to analyse the contributing factors to the emergence of filter bubbles. It includes different recommendation algorithms and social network dynamics. Cognitive filters are based on the Triple Filter Bubble model [5].References1.Richard Fletcher, 20202.Eli Pariser, 20123.Chitra & Musco, 20204. Möller et al., 20185. Daniel Geschke et al, 2018
BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.