Learning communities worden gezien als een effectieve manier om gezamenlijk te leren en ontwikkelen, werken, innoveren en te onderzoeken. Een manier die mensen verbindt die graag willen leren, ontwikkelen en werken over grenzen van hun organisatie en discipline, en aan een gezamenlijk doel. Het is meer dan af en toe samen komen en met elkaar en van gedachten wisselen, en kan bijdragen aan duurzame inzetbaarheid, persoonlijke ontwikkeling en groei. Maar hoe ziet dat er dan uit? In deze publicatie worden de belangrijkste bouwstenen en handvatten voor een krachtige learning community besproken, en verder toegelicht aan de hand van vier praktijkvoorbeelden: 1) Gas Erop! Learning communities in organisaties, 2) H2Hub Twente - Een learning community tussen meerdere organisaties, 3) Smart Solutions Semester - Een learning community in het onderwijs, en 4) Learning Communities bij HealthTech in Society. Over hoe deze learning communities zijn ontstaan en vormgegeven, hoe zijn gegroeid en wat ze hebben opgeleverd.
MULTIFILE
Background: Motor learning is central to domains such as sports and rehabilitation; however, often terminologies are insufficiently uniform to allow effective sharing of experience or translation of knowledge. A study using a Delphi technique was conducted to ascertain level of agreement between experts from different motor learning domains (i.e., therapists, coaches, researchers) with respect to definitions and descriptions of a fundamental conceptual distinction within motor learning, namely implicit and explicit motor learning. Methods: A Delphi technique was embedded in multiple rounds of a survey designed to collect and aggregate informed opinions of 49 international respondents with expertise related to motor learning. The survey was administered via an online survey program and accompanied by feedback after each round. Consensus was considered to be reached if $70% of the experts agreed on a topic. Results: Consensus was reached with respect to definitions of implicit and explicit motor learning, and seven common primary intervention strategies were identified in the context of implicit and explicit motor learning. Consensus was not reached with respect to whether the strategies promote implicit or explicit forms of learning. Discussion: The definitions and descriptions agreed upon may aid translation and transfer of knowledge between domains in the field of motor learning. Empirical and clinical research is required to confirm the accuracy of the definitions and to explore the feasibility of the strategies that were identified in research, everyday practice and education.
Background: A significant part of neurological rehabilitation focuses on facilitating the learning of motor skills. Training can adopt either (more) explicit or (more) implicit forms of motor learning. Gait is one of the most practiced motor skills within rehabilitation in people after stroke because it is an important criterion for discharge and requirement for functioning at home. Objective: The aim of this study was to describe the design of a randomized controlled study assessing the effects of implicit motor learning compared with the explicit motor learning in gait rehabilitation of people suffering from stroke. Methods: The study adopts a randomized, controlled, single-blinded study design. People after stroke will be eligible for participation when they are in the chronic stage of recovery (>6 months after stroke), would like to improve walking performance, have a slow walking speed (<1 m/s), can communicate in Dutch, and complete a 3-stage command. People will be excluded if they cannot walk a minimum of 10 m or have other additional impairments that (severely) influence gait. Participants will receive 9 gait-training sessions over a 3-week period and will be randomly allocated to an implicit or explicit group. Therapists are aware of the intervention they provide, and the assessors are blind to the intervention participants receive. Outcome will be assessed at baseline (T0), directly after the intervention (T1), and after 1 month (T2). The primary outcome parameter is walking velocity. Walking performance will be assessed with the 10-meter walking test, Dynamic Gait Index, and while performing a secondary task (dual task). Self-reported measures are the Movement Specific Reinvestment Scale, verbal protocol, Stroke and Aphasia Quality of Life Scale, and the Global Perceived Effect scale. A process evaluation will take place to identify how the therapy was perceived and identify factors that may have influenced the effectiveness of the intervention. Repeated measures analyses will be conducted to determine significant and clinical relevant differences between groups and over time. Results: Data collection is currently ongoing and results are expected in 2019. Conclusions: The relevance of the study as well as the advantages and disadvantages of several aspects of the chosen design are discussed, for example, the personalized approach and choice of measurements.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Studenten in het beroepsonderwijs leren op de werkplek om een goede beroepsuitoefenaar te worden. Beoordeling van het werkplekleren gebeurt vaak op de werkplek en door de werkplek. Dit promotieonderzoek wil in kaart brengen hoe werkplekopleiders de student beoordelen.