Objective: To describe the development of a goal-directed movement intervention in two medical wards, including recommendations for implementation and evaluation. Design: Implementation Research. Setting: Pulmonology and nephrology/gastroenterology wards of the University Medical Centre Utrecht, The Netherlands. Participants: Seven focus groups were executed including 28 nurses, 7 physical therapists and 15 medical specialists. Patients' perceptions were repeatedly assessed during the iterative steps of the intervention development. Intervention: Interventions were targeted to each ward's specific character, following an Intervention Mapping approach using literature and research meetings. Main measures: Intervention components were linked to Behavior Change Techniques and implementation strategies will be selected using the Expert Recommendation Implementing Change tool. Evaluation outcomes like number of patients using the movement intervention will be measured, based on the taxonomy of Proctor. Results: The developed intervention consists of: insight in patients movement behavior (monitoring & feedback), goal setting (goals & planning) and adjustments to the environment (associations & antecedents). The following implementation strategies are recommended: to conduct educational meetings, prepare & identify champions and audit & provide feedback. To measure service and client outcomes, the mean level of physical activity per ward can be evaluated and the Net Promoter Score can be used. Conclusion(s): This study shows the development of a goal-directed movement intervention aligned with the needs of healthcare professionals. This resulted in an intervention consisting of feedback & monitoring of movement behavior, goal setting and adjustments in the environment. Using a step-by-step iterative implementation model to guide development and implementation is recommended.
DOCUMENT
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
DOCUMENT
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
DOCUMENT
Background and purpose The aim of this study is to investigate changes in movement behaviors, sedentary behavior and physical activity, and to identify potential movement behavior trajectory subgroups within the first two months after discharge from the hospital to the home setting in first-time stroke patients. Methods A total of 140 participants were included. Within three weeks after discharge, participants received an accelerometer, which they wore continuously for five weeks to objectively measure movement behavior outcomes. The movement behavior outcomes of interest were the mean time spent in sedentary behavior (SB), light physical activity (LPA) and moderate to vigorous physical activity (MVPA); the mean time spent in MVPA bouts ≥ 10 minutes; and the weighted median sedentary bout. Generalized estimation equation analyses were performed to investigate overall changes in movement behavior outcomes. Latent class growth analyses were performed to identify patient subgroups of movement behavior outcome trajectories. Results In the first week, the participants spent an average, of 9.22 hours (67.03%) per day in SB, 3.87 hours (27.95%) per day in LPA and 0.70 hours (5.02%) per day in MVPA. Within the entire sample, a small but significant decrease in SB and increase in LPA were found in the first weeks in the home setting. For each movement behavior outcome variable, two or three distinctive subgroup trajectories were found. Although subgroup trajectories for each movement behavior outcome were identified, no relevant changes over time were found. Conclusion Overall, the majority of stroke survivors are highly sedentary and a substantial part is inactive in the period immediately after discharge from hospital care. Movement behavior outcomes remain fairly stable during this period, although distinctive subgroup trajectories were found for each movement behavior outcome. Future research should investigate whether movement behavior outcomes cluster in patterns.
MULTIFILE
This paper reports on the first stage of a research project1) that aims to incorporate objective measures of physical activity into health and lifestyle surveys. Physical activity is typically measured with questionnaires that are known to have measurement issues, and specifically, overestimate the amount of physical activity of the population. In a lab setting, 40 participants wore four different sensors on five different body parts, while performing various activities (sitting, standing, stepping with two intensities, bicycling with two intensities, walking stairs and jumping). During the first four activities, energy expenditure was measured by monitoring heart rate and the gas volume of in‐ and expired O2 and CO2. Participants subsequently wore two sensor systems (the ActivPAL on the thigh and the UKK on the waist) for a week. They also kept a diary keeping track of their physical activities, work and travel hours. Machine learning algorithms were trained with different methods to determine which sensor and which method was best able to differentiate the various activities and the intensity with which they were performed. It was found that the ActivPAL had the highest overall accuracy, possibly because the data generated on the upper tigh seems to be best distinguishing between different types of activities and therefore led to the highest accuracy. Accuracy could be slightly increased by including measures of heartrate. For recognizing intensity, three different measures were compared: allocation of MET values to activities (used by ActivPAL), median absolute deviation, and heart rate. It turns out that each method has merits and disadvantages, but median absolute deviation seems to be the most promishing metric. The search for the best method of gauging intensity is still ongoing. Subsequently, the algorithms developed for the lab data were used to determine physical activity in the week people wore the devices during their everyday activities. It quickly turned out that the models are far from ready to be used on free living data. Two approaches are suggested to remedy this: additional research with meticulously labelled free living data, e.g., by combining a Time Use Survey with accelerometer measurements. The second is to focus on better determining intensity of movement, e.g., with the help of unsupervised pattern recognition techniques. Accuracy was but one of the requirements for choosing a sensor system for subsequent research and ultimate implementation of sensor measurement in health surveys. Sensor position on the body, wearability, costs, usability, flexibility of analysis, response, and adherence to protocol equally determine the choice for a sensor. Also from these additional points of view, the activPAL is our sensor of choice.
DOCUMENT
BACKGROUND: Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this problem.OBJECTIVE: This study examines whether sensor-augmented toys can be used to assess children's fine motor skills. The objectives were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition (fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on the prediction.METHODS: Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with a sensor-augmented toy called "Futuro Cube." The game "roadrunner" focused on speed while the game "maze" focused on precision. Each game had several levels of difficulty. While playing, both sensor and game data were collected. Four supervised machine learning classifiers were trained with these data to predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best on accuracy and F1 score. For all statistical tests, we used α=.05.RESULTS: The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differences in performance were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, P=.03; KNN, P=.01; LR, P=.02; SVM, P=.04). No significant differences in performance were found in the accuracy scores between the best performing classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, P=.42; DT vs LR, P=.35; DT vs SVM, P=.08) and the maze game (DT vs KNN, P=.15; DT vs LR, P=.62; DT vs SVM, P=.26). The accuracy of only the best performing level of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (P=.046).CONCLUSIONS: The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is more important for determining the performance than selecting the machine learning classifier or level of difficulty.
DOCUMENT
Purpose (1) To investigate the differences in the course of participation up to one year after stroke between distinct movement behavior patterns identified directly after discharge to the home setting, and (2) to investigate the longitudinal association between the development of movement behavior patterns over time and participation after stroke. Materials and methods 200 individuals with a first-ever stroke were assessed directly after discharge to the home setting, at six months and at one year. The Participation domain of the Stroke Impact Scale 3.0 was used to measure participation. Movement behavior was objectified using accelerometry for 14 days. Participants were categorized into three distinct movement behavior patterns: sedentary exercisers, sedentary movers and sedentary prolongers. Generalized estimating equations (GEE) were performed. Results People who were classified as sedentary prolongers directly after discharge was associated with a worse course of participation up to one year after stroke. The development of sedentary prolongers over time was also associated with worse participation compared to sedentary exercisers. Conclusions The course of participation after stroke differs across distinct movement behavior patterns after discharge to the home setting. Highly sedentary and inactive people with stroke are at risk for restrictions in participation over time. Implications for rehabilitation The course of participation in people with a first-ever stroke up to one year after discharge to the home setting differed based on three distinct movement behavior patterns, i.e., sedentary exercisers, sedentary movers and sedentary prolongers. Early identification of highly sedentary and inactive people with stroke after discharge to the home setting is important, as sedentary prolongers are at risk for restrictions in participation over time. Supporting people with stroke to adapt and maintain a healthy movement behavior after discharge to the home setting could prevent potential long-term restrictions in participation.
MULTIFILE
The problem addressed in this report is to verify the possibility of using an optical sensor in the SaxShirt in order to extract the heart rate. There are specifically three questions that we try to address. 1) How is it possible to extract heart rate (BPM) from the optical sensor? 2) Is it possible to use the sensor for extracting BPM during movement? 3) Is the heart rate measured in this way useful for measuring other higher-level parameters such as heart rate coherence and heart rate variability? For this purpose, we have performed tests with the sensor placed on different spots and the data was analyzed to see if heart rate can be extracted from the sensor measurements.
MULTIFILE
Background: Osteoarthritis is one of the most common chronic joint diseases, mostly affecting the knee or hip through pain, joint stiffness and decreased physical functioning in daily life. Regular physical activity (PA) can help preserve and improve physical functioning and reduce pain in patients with osteoarthritis. Interventions aiming to improve movement behaviour can be optimized by tailoring them to a patients' starting point; their current movement behaviour. Movement behaviour needs to be assessed in its full complexity, and therefore a multidimensional description is needed. Objectives: The aim of this study was to identify subgroups based on movement behaviour patterns in patients with hip and/or knee osteoarthritis who are eligible for a PA intervention. Second, differences between subgroups regarding Body Mass Index, sex, age, physical functioning, comorbidities, fatigue and pain were determined between subgroups. Methods: Baseline data of the clinical trial 'e-Exercise Osteoarthritis', collected in Dutch primary care physical therapy practices were analysed. Movement behaviour was assessed with ActiGraph GT3X and GT3X+ accelerometers. Groups with similar patterns were identified using a hierarchical cluster analysis, including six clustering variables indicating total time in and distribution of PA and sedentary behaviours. Differences in clinical characteristics between groups were assessed via Kruskall Wallis and Chi2 tests. Results: Accelerometer data, including all daily activities during 3 to 5 subsequent days, of 182 patients (average age 63 years) with hip and/or knee osteoarthritis were analysed. Four patterns were identified: inactive & sedentary, prolonged sedentary, light active and active. Physical functioning was less impaired in the group with the active pattern compared to the inactive & sedentary pattern. The group with the prolonged sedentary pattern experienced lower levels of pain and fatigue and higher levels of physical functioning compared to the light active and compared to the inactive & sedentary. Conclusions: Four subgroups with substantially different movement behaviour patterns and clinical characteristics can be identified in patients with osteoarthritis of the hip and/or knee. Knowledge about these subgroups can be used to personalize future movement behaviour interventions for this population.
LINK