This report is intended to collect, present, and evaluate the various solutions applied in individual operational pilots for their (upscaling and transnational transfer) potential, in terms of opportunities and barriers, over the short and long(er)-term. This is done by identifying the main characteristics of the solutions and sites and the relevant influencing factors at different local (dimension) contexts.The analysis provides insights in barriers but also opportunities and conditions for success across four main dimensions that make up the local context landscape. We consider two main roll-out scenarios:1. Upscaling within the boundaries of the country where the operational pilot (OP) took place2. Transnational Transfer relates to the potential for transferring a (V4)ES solution to any of the other three (project) countriesThere are several aspects within the four main dimensions that are cross-cutting for all four countries, either because EU legislation lies at its roots, or because market conditions are fairly similar for certain influencing factors in those dimension.Ultimately, both Smart Charging and V2X market are still in their relevant infancies. The solutions applied in various SEEV4-City pilots are relatively straightforward and simple in ‘smartness’. This helps the potential for adoption but may not always be the optimal solution yet. The Peak shaving or load/demand shifting solutions are viable options to reduce costs for different stakeholders in the (electricity) supply chain. The market is likely to mature and become much smarter in coming 5 – 10 years. This also includes the evolvement (or spin-offs) of the solutions applied in SEEV4-_City as well. At least in the coming (approximately) 5 years Smart Charging appears to have the better financial business case and potential for large scale roll-out with less (impactful) bottlenecks, but looking at longer term V2X holds its potential to play a significant role in the energy transition.A common denominator as primary barriers relates to existing regulation, standards readiness and limited market availability of either hardware or service offerings.
BackgroundPhysical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence.Methods and ResultsWe conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism.ConclusionsAnimal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer.RegistrationURL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
MULTIFILE
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.