Big data analytics received much attention in the last decade and is viewed as one of the next most important strategic resources for organizations. Yet, the role of employees' data literacy seems to be neglected in current literature. The aim of this study is twofold: (1) it develops data literacy as an organization competency by identifying its dimensions and measurement, and (2) it examines the relationship between data literacy and governmental performance (internal and external). Using data from a survey of 120 Dutch governmental agencies, the proposed model was tested using PLS-SEM. The results empirically support the suggested theoretical framework and corresponding measurement instrument. The results partially support the relationship of data literacy with performance as a significant effect of data literacy on internal performance. However, counter-intuitively, this significant effect is not found in relation to external performance.
MULTIFILE
The growing availability of data offers plenty of opportunities for data driven innovation of business models for SMEs like interactive media companies. However, SMEs lack the knowledge and processes to translate data into attractive propositions and design viable data-driven business models. In this paper we develop and evaluate a practical method for designing data driven business models (DDBM) in the context of interactive media companies. The development follows a design science research approach. The main result is a step-by-step approach for designing DDBM, supported by pattern cards and game boards. Steps consider required data sources and data activities, actors and value network, revenue model and implementation aspects. Preliminary evaluation shows that the method works as a discussion tool to uncover assumptions and make assessments to create a substantiated data driven business model.
MULTIFILE
Moving away from the strong body of critique of pervasive ‘bad data’ practices by both governments and private actors in the globalized digital economy, this book aims to paint an alternative, more optimistic but still pragmatic picture of the datafied future. The authors examine and propose ‘good data’ practices, values and principles from an interdisciplinary, international perspective. From ideas of data sovereignty and justice, to manifestos for change and calls for activism, this collection opens a multifaceted conversation on the kinds of futures we want to see, and presents concrete steps on how we can start realizing good data in practice.
MULTIFILE