The WATERMINING project aims to bring solutions to improve the circularity of water treatment and the resulting by-products of these processes. Achieving a deep understanding of the barriers potentially hindering the development of circular water solutions is crucial to design policies that enable the deployment of these techniques. To do this, the WATERMINING project organizes Communities of Practice (CoPs), where stakeholders from the WATERMINING case study projects analysed these market barriers and proposal (policy) measures to clear these.CoPs in the case studies of Lampedusa in Italy and Almería in Spain focused on sea water desalination. The case studies of Faro-Olhão in Portugal, Larnaca in Cyprus and La Llagosta in Spain have been discussed by CoP stakeholders in terms of barriers in circular urban wastewater treatment. The CoP in the Netherlands focused on circular industrial waste water treatment at the Westlake plant at Rotterdam. The barriers defined by the stakeholders in the CoPs were discussed by the WATERMINING partners at the consortium meeting in Palermo (Italy, September 2022), and presented at the WATERMINING Market and Policy workshop in Brussels (Belgium, February 2023).Addressing the three above-mentioned categories of circular water solutions, common barriers identified across all WATERMINING’s case studies are the following. First, stakeholders report a lack of incentives to implement circular solutions, as mainstream linear practices are generally cheaper.This could be addressed by de-encouraging linear techniques by making the disposal of their byproducts (such as brine) more expensive. Another solution could be to provide added value to circular solutions through the monetization of their additional products and services. Subsidies can support in lowering production costs or prices of materials recovered from sea- and wastewater treatment to level the playing field with conventionaly derived material.Another commonly mentioned barrier is the difficulty to introduce products obtained from circular water treatment in the market, both because of a lack of public acceptance and legal constraints stemming from products being regarded as waste. Information campaigns and the revision of current regulatory frameworks to allow these products entering the market would expand the revenue sources from these techniques and improve the circularity of the system. Standardising the circular water treatment technologies in the market could support this, whereby best available techniques reference documents of the EU (BREFs) could be an effective instrument, especially when tapping into an ongoing BREF writing or updating process.Across the case studies and replication studies it has been mentioned that current legislation in case study countries exclude ‘watermined’ products from food and/or other applications. Criteria for endof-waste status of ‘watermined’ products, which would determine whether a product, such as Kaumera which is produced from urban wastewater treatment, is eligible as a fertiliser in agriculture, are usually determined at the level of the EU, but Member States could interpret these more stringently (Member State-level criteria cannot be weaker than the EU-level ones). In this respect it has been recommended to enhance knowledge exchange across Member States, e.g., by creating anEU-based unit (or competencies within an existing unit) to promote cooperation among EU Member States and regional authorities concerning the production, sale and use of products recovered from wastewater treatment.Another common perception stakeholders report is the widespread conservatism in the water sector. Water treatment actors traditionally have a focus on purifying water and supplying this to the market. Generating products from waste streams is often something that market actors are less familiar with. Among other solutions, the ‘Dutch model’ has been recommended as a way to create national centres for the development of knowledge and technology for water management, which would serve as an R&D accelerator.
LINK
This lessons learned report gives an overview of the output and results of the first phase of the REDUCES project. The introduction states the relevance of combining a policy approach with business model analysis, and defines the objectives. Next, an overview is given of circular economy good business practices in the regions involved. Examining these business practices helped to define the regional needs for circular economy policy. This business approach proved to be a solid base for developing regional circular economy action plans, the last chapter of this report.
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
In June 2016, two Dutch SME companies which are active in the area of urban solid waste management approached the International Environmental Sciences department of Avans about the current R&D activities on urban solid waste management in cooperation with the Federal University of Minas Gerais (UFMG) Brazil. The companies had interest in developing activities in Brazil, since they are aware of the great potential for exporting both knowledge and technology. Solid waste poses a major problem in Brazil which affects 200 million residents. The Brazilian municipalities collect around 71 million tons solid municipal waste on a yearly basis and only a tiny percentage of this collected waste gets recycled. As such. the overwhelming majority of the collected urban solid waste goes to landfills. Within the State of Minas Gerais there are 850 towns of which 600 have less than 20.000 residents and are agriculturally oriented. Current organic waste composting practices take place under very poor conditions (pathogens and weeds still remain in the compost) and most often the resulting compost product is not well received by its residential and agricultural consumers. As such there is huge room for improvement. The SME companies work with Avans and UFMG to address these challenges. The joint research team consisting of the two Dutch SME companies and the two Research and educational institutes have defined the following research question: What is the current status of organic solid waste management in Minas Gerais and how can cooperation between Brazil and the Netherlands result in a win-win for both countries? Two individual KIEM VANG proposals have been defined in order to address these challenges. The planned activities are a joint effort with professor R. T. de Vasconcelos Barros of the Universidade Federal de Minas Gerais (UFMG) and are executed within the Living Lab Biobased Brazil program (www.biobasedbrazil.org).