BACKGROUND: Muscle force is important for daily life and sports and can be measured with a handheld dynamometer. Reference values are employed to quantify a subject's muscle force. It is not unambiguous whether reference values can be generalized to other populations. Objectives in this study were; first to confirm the reliability of the utilization of hand-held dynamometers for isometric strength measurement; second to determine reference values for a population of Dutch workers; third to compare these values with those of a USA population.METHODS: 462 Healthy working subjects (259 male, 203 female) were included in this study. Their age ranged from 20 to 60 years with a mean (sd) of 41 (11) years. Muscle force values from elbow flexion and extension, knee flexion and extension, and shoulder abduction were measured with the break method using a MicroFet 2 hand-held dynamometer. Reliability was analyzed by calculating ICC's and limits of agreement. Muscle force expressed in Newton, means, and confidence intervals were determined for males and females in age groups ranging from twenty to sixty years old. Regression equations and explained variances were calculated from weight, height, age, and gender. The mean values and 95% CI were compared to the results from other studies.RESULTS: Reliability was good; the ICC ranged between 0.83 to 0.94. The explained variance ranged from 0.25 to 0.51. Comparison of data for the Dutch population mean muscle force values with those from the USA revealed important differences between muscle force reference values for the American and Dutch populations.CONCLUSIONS: Muscle force measurements demonstrate a sound reliability. Reference values and regressions equations are made available for the Dutch population. Comparison with other studies indicates that reference values differ between countries.
DOCUMENT
Background: The ability to generate muscle strength is a pre-requisite for all human movement. Decreasedquadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the QForce in older adults in 110° extension.Methods: Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed.Results: Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of −18.6 N to 33.8 N and the right leg of −9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2.Conclusion: The present study shows that the Q Force has excellent relative test-retest reliability, but limitedabsolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for application in various clinical settings, however, its capability to detect changes in muscle force over time is limited but comparable to existing instruments.
DOCUMENT
Generalized loss of muscle mass is associated with increased morbidity and mortality in patients with cancer. The gold standard to measure muscle mass is by using computed tomography (CT). However, the aim of this prospective observational cohort study was to determine whether point-of-care ultrasound (POCUS) could be an easy-to-use, bedside measurement alternative to evaluate muscle status. Patients scheduled for major abdominal cancer surgery with a recent preoperative CT scan available were included. POCUS was used to measure the muscle thickness of mm. biceps brachii, mm. recti femoris, and mm. vasti intermedius 1 day prior to surgery. The total skeletal muscle index (SMI) was derived from patients’ abdominal CT scan at the third lumbar level. Muscle force of the upper and lower extremities was measured using a handheld dynamometer. A total of 165 patients were included (55% male; 65 ± 12 years). All POCUS measurements of muscle thickness had a statistically significant correlation with CT-derived SMI (r ≥ 0.48; p < 0.001). The strongest correlation between POCUS muscle measurements and SMI was observed when all POCUS muscle groups were added together (r = 0.73; p < 0.001). Muscle strength had a stronger correlation with POCUS-measured muscle thickness than with CT-derived SMI. To conclude, this study indicated a strong correlation between combined muscle thickness measurements performed by POCUS- and CT-derived SMI and measurements of muscle strength. These results suggest that handheld ultrasound is a valid tool for the assessment of skeletal muscle status.
DOCUMENT