Powerful Ageing is a power training intervention offered by Dutch municipalities to improve the physical functioning of its older residents, thereby reducing their reliance on assistive living devices and social support services. This study aimed to investigate the effects of Powerful Ageing on muscle power, physical performance, and physical functioning in older adults immediately following the intervention and at 1-year follow-up. The study design was a prospective longitudinal case series. Eligible older adults requesting social support services from their municipality participated in a 14-week power training intervention. Primary outcomes were categorized according to ICF health domains: within the function domain, muscle power was measured with a Power Squat Test and a Lifting Test; within the activities domain, physical performance was assessed using the Star Agility Run and Timed Up-and-Go Test; and within the participation domain, physical functioning was assessed using a patient-specific complaints questionnaire. Participant motivation, a secondary outcome, was assessed using a short questionnaire.
MULTIFILE
Previous research shows that power training can increase power output in older adults and may also improve physical performance, physical functioning, and independence. However, power training interventions have not been optimized for older adults. The aim of this study was to assess the feasibility and preliminary effectiveness of a power training program called Powerful Ageing in older adults. A total of 28 older adults participated in a 12-week power training intervention at an intensity of 20-30% 1RM. The primary outcome, feasibility, was assessed through intervention retention, adherence (attendance and compliance), and safety. Secondary outcomes were measured in health domains of the ICF. In the function domain, muscle power and anaerobic power were assessed using a weighted squat and Wingate test, respectively. In the activities domain, physical performance was measured using the 6-minute walk test, and in the participation domain, physical activity in daily life and health status were evaluated using an accelerometer and the SF-36 questionnaire, respectively.
MULTIFILE
Research suggests that muscle power is a more critical determinant of physical functioning in older adults than muscle strength. The objective of this study was to systematically review the literature on the effect of power training compared to strength training in older adults on tests for muscle power, two groups of activity-based tests under controlled conditions: generic tests and tests with an emphasis on movement speed, and finally, physical activity level in daily life. A systematic search for randomized controlled trials comparing effects of power training to strength training in older adults was performed in PubMed, Embase, Ebsco/CINAHL, Ebsco/SPORTDiscus, Wiley/Cochrane Library and Scopus. Risk of bias was assessed using the Cochrane Collaboration Tool, and quality of evidence was evaluated using GRADEpro Guideline Development Tool. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcomes separately using a random effects model.
MULTIFILE
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.
DOCUMENT
Randomized controlled trials (RCTs) indicate that power training has the ability to improve muscle power and physical performance in older adults. However, power training definitions are broad and previously-established criteria are vague, making the validity and replicability of power training interventions used in RCTs uncertain. The aim of this review was to assess whether the power training interventions identified in a previous systematic review (el Hadouchi 2022) are fully described, therapeutically valid, and meet our proposed criteria for power training.
MULTIFILE
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
An important performance determinant in wheelchair sports is the power exchanged between the athletewheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9–1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.
DOCUMENT
Background: Skeletal muscle loss is often observed in intensive care patients. However, little is known about postoperative muscle loss, its associated risk factors, and its long-term consequences. The aim of this prospective observational study is to identify the incidence of and risk factors for surgery-related muscle loss (SRML) after major abdominal surgery, and to study the impact of SRML on fatigue and survival. Methods: Patients undergoing major abdominal cancer surgery were included in the MUSCLE POWER STUDY. Muscle thickness was measured by ultrasound in three muscles bilaterally (biceps brachii, rectus femoris, and vastus intermedius). SRML was defined as a decline of 10 per cent or more in diameter in at least one arm and leg muscle within 1 week postoperatively. Postoperative physical activity and nutritional intake were assessed using motility devices and nutritional diaries. Fatigue was measured with questionnaires and 1-year survival was assessed with Cox regression analysis. Results: A total of 173 patients (55 per cent male; mean (s.d.) age 64.3 (11.9) years) were included, 68 of whom patients (39 per cent) showed SRML. Preoperative weight loss and postoperative nutritional intake were statistically significantly associated with SRML in multivariable logistic regression analysis (P < 0.050). The combination of insufficient postoperative physical activity and nutritional intake had an odds ratio of 4.00 (95 per cent c.i. 1.03 to 15.47) of developing SRML (P = 0.045). No association with fatigue was observed. SRML was associated with decreased 1-year survival (hazard ratio 4.54, 95 per cent c.i. 1.42 to 14.58; P = 0.011). Conclusion: SRML occurred in 39 per cent of patients after major abdominal cancer surgery, and was associated with a decreased 1-year survival.
DOCUMENT