Background & aims: Accurate diagnosis of sarcopenia requires evaluation of muscle quality, which refers to the amount of fat infiltration in muscle tissue. In this study, we aim to investigate whether we can independently predict mortality risk in transcatheter aortic valve implantation (TAVI) patients, using automatic deep learning algorithms to assess muscle quality on procedural computed tomography (CT) scans. Methods: This study included 1199 patients with severe aortic stenosis who underwent transcatheter aortic valve implantation (TAVI) between January 2010 and January 2020. A procedural CT scan was performed as part of the preprocedural-TAVI evaluation, and the scans were analyzed using deep-learning-based software to automatically determine skeletal muscle density (SMD) and intermuscular adipose tissue (IMAT). The association of SMD and IMAT with all-cause mortality was analyzed using a Cox regression model, adjusted for other known mortality predictors, including muscle mass. Results: The mean age of the participants was 80 ± 7 years, 53% were female. The median observation time was 1084 days, and the overall mortality rate was 39%. We found that the lowest tertile of muscle quality, as determined by SMD, was associated with an increased risk of mortality (HR 1.40 [95%CI: 1.15–1.70], p < 0.01). Similarly, low muscle quality as defined by high IMAT in the lowest tertile was also associated with increased mortality risk (HR 1.24 [95%CI: 1.01–1.52], p = 0.04). Conclusions: Our findings suggest that deep learning-assessed low muscle quality, as indicated by fat infiltration in muscle tissue, is a practical, useful and independent predictor of mortality after TAVI.
DOCUMENT
OBJECTIVES: Assessment of malnutrition-related muscle depletion with computed tomography (CT) using skeletal muscle index (SMI) and muscle radiation attenuation (MRA) at the third lumbar vertebra is well validated. However, SMI and MRA values at other vertebral locations and interchangeability as parameters in different types of cancer are less known. We aimed to investigate whether adult patients with different types of cancer show differences in SMI and MRA at all vertebral levels.METHODS: We retrospectively analyzed CT images from 203 patients:120 with head and neck cancer, esophageal cancer, or lung cancer (HNC/EC/LC) and 83 with melanoma (ME). Univariate and multivariate linear regression analyses determined the association between SMI (cm²/m 2) and MRA (Hounsfield units) and cancer type at each vertebral level (significance corrected for multiple tests, P ≤ 0.002). The multivariate analyses included age, sex, cancer stage, comorbidity, CT protocol, and body mass index (BMI) (MRA analyses). RESULTS: SMI was lower in the HNC/EC/LC group versus the ME group at all vertebral levels, except C4 through C6 in the multivariate analyses. Female sex was associated with lower SMI at almost all levels. MRA was similar at most vertebral levels in both cancer groups but was lower at C1 through C4, T7, and L5 in the multivariate analyses. Use of contrast fluid and BMI were associated with higher MRA at all vertebral levels except T8 to T9 and C1 to C2, respectively.CONCLUSIONS: SMI, but not MRA, was lower in HNC/EC/LC patients than in ME patients at most vertebral levels. This indicates that low muscle mass presents itself across the various vertebral muscle areas. MRA may less consistently mark muscle depletion in malnourished patients.
DOCUMENT
INTRODUCTION: In patients with cancer, low muscle mass has been associated with a higher risk of fatigue, poorer treatment outcomes, and mortality. To determine body composition with computed tomography (CT), measuring the muscle quantity at the level of lumbar 3 (L3) is suggested. However, in patients with cancer, CT imaging of the L3 level is not always available. Thus far, little is known about the extent to which other vertebra levels could be useful for measuring muscle status. In this study, we aimed to assess the correlation of the muscle quantity and quality between any vertebra level and L3 level in patients with various tumor localizations.METHODS: Two hundred-twenty Positron Emission Tomography (PET)-CT images of patients with four different tumor localizations were included: 1. head and neck ( n = 34), 2. esophagus ( n = 45), 3. lung ( n = 54), and 4. melanoma ( n = 87). From the whole body scan, 24 slices were used, i.e., one for each vertebra level. Two examiners contoured the muscles independently. After contouring, muscle quantity was estimated by calculating skeletal muscle area (SMA) and skeletal muscle index (SMI). Muscle quality was assessed by calculating muscle radiation attenuation (MRA). Pearson correlation coefficient was used to determine whether the other vertebra levels correlate with L3 level. RESULTS: For SMA, strong correlations were found between C1-C3 and L3, and C7-L5 and L3 ( r = 0.72-0.95). For SMI, strong correlations were found between the levels C1-C2, C7-T5, T7-L5, and L3 ( r = 0.70-0.93), respectively. For MRA, strong correlations were found between T1-L5 and L3 ( r = 0.71-0.95). DISCUSSION: For muscle quantity, the correlations between the cervical, thoracic, and lumbar levels are good, except for the cervical levels in patients with esophageal cancer. For muscle quality, the correlations between the other levels and L3 are good, except for the cervical levels in patients with melanoma. If visualization of L3 on the CT scan is absent, the other thoracic and lumbar vertebra levels could serve as a proxy to measure muscle quantity and quality in patients with head and neck, esophageal, lung cancer, and melanoma, whereas the cervical levels may be less reliable as a proxy in some patient groups.
DOCUMENT
Echo intensity determined by muscle ultrasound has been proposed as an efficient method for the assessment of muscle quality. The influence of changing ultrasound parameter settings on echo intensity values was assessed using a standardized approach. In this repeated measures cross-sectional study, sixteen repeated scans of rectus femoris, gracilis, and rectus abdominis were taken in 21 middle-aged persons with a portable Mindray M7 premium ultrasound machine equipped with a linear 5.0–10.0 MHz transducer. The settings of three parameters were fixed: gain, depth, and frequency. The settings of the following adjustable parameters were changed over their entire range: dynamic range, gray map, line density, persistence, and IClear. Repeated measures analyses were performed to evaluate the effect of changing the settings on echo intensity values. In all three muscles, dynamic range, gray map, and IClear correlated significantly (rrm-values ranging between −0.86 and 0.45) with echo intensity. In all three muscles, the echo intensity values differed significantly across the dynamic range (p < 0.013), gray map (p < 0.003), and IClear (p < 0.003). In middle-aged subjects, echo intensity values of lower limb and trunk muscles are significantly related to ultrasound parameters and significantly differ across their respective setting range. For the assessment of muscle quality through ultrasound, it is suggested to fix parameter settings within their midrange in order to minimize the effect of setting-dependent factors on EI values.
DOCUMENT
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
BACKGROUND: Muscle quantity at intensive care unit (ICU) admission has been independently associated with mortality. In addition to quantity, muscle quality may be important for survival. Muscle quality is influenced by fatty infiltration or myosteatosis, which can be assessed on computed tomography (CT) scans by analysing skeletal muscle density (SMD) and the amount of intermuscular adipose tissue (IMAT). We investigated whether CT-derived low skeletal muscle quality at ICU admission is independently associated with 6-month mortality and other clinical outcomes.METHODS: This retrospective study included 491 mechanically ventilated critically ill adult patients with a CT scan of the abdomen made 1 day before to 4 days after ICU admission. Cox regression analysis was used to determine the association between SMD or IMAT and 6-month mortality, with adjustments for Acute Physiological, Age, and Chronic Health Evaluation (APACHE) II score, body mass index (BMI), and skeletal muscle area. Logistic and linear regression analyses were used for other clinical outcomes.RESULTS: Mean APACHE II score was 24 ± 8 and 6-month mortality was 35.6%. Non-survivors had a lower SMD (25.1 vs. 31.4 Hounsfield Units (HU); p < 0.001), and more IMAT (17.1 vs. 13.3 cm(2); p = 0.004). Higher SMD was associated with a lower 6-month mortality (hazard ratio (HR) per 10 HU, 0.640; 95% confidence interval (CI), 0.552-0.742; p < 0.001), and also after correction for APACHE II score, BMI, and skeletal muscle area (HR, 0.774; 95% CI, 0.643-0.931; p = 0.006). Higher IMAT was not significantly associated with higher 6-month mortality after adjustment for confounders. A 10 HU increase in SMD was associated with a 14% shorter hospital length of stay.CONCLUSIONS: Low skeletal muscle quality at ICU admission, as assessed by CT-derived skeletal muscle density, is independently associated with higher 6-month mortality in mechanically ventilated patients. Thus, muscle quality as well as muscle quantity are prognostic factors in the ICU.TRIAL REGISTRATION: Retrospectively registered (initial release on 06/23/2016) at ClinicalTrials.gov: NCT02817646 .
DOCUMENT
Purpose: Measurement of muscle mass is paramount in the screening and diagnosis of sarcopenia. Besides muscle quantity however, also quality assessment is important. Ultrasonography (US) has the advantage over dual-energy X-ray absorptiometry (DEXA) and bio-impedance analysis (BIA) to give both quantitative and qualitative information on muscle. However, before its use in clinical practice, several methodological aspects still need to be addressed. Both standardization in measurement techniques and the availability of reference values are currently lacking. This review aims to provide an evidence-based standardization of assessing appendicular muscle with the use of US. Methods: A systematic review was performed for ultrasonography to assess muscle in older people. Pubmed, SCOPUS and Web of Sciences were searched. All articles regarding the use of US in assessing appendicular muscle were used. Description of US-specific parameters and localization of the measurement were retrieved. Results: Through this process, five items of muscle assessment were identified in the evaluated articles: thickness, cross-sectional area, echogenicity, fascicle length and pennation angle. Different techniques for measurement and location of measurement used were noted, as also the different muscles in which this was evaluated. Then, a translation for a clinical setting in a standardized way was proposed. Conclusions: The results of this review provide thus an evidence base for an ultrasound protocol in the assessment of skeletal muscle. This standardization of measurements is the first step in creating conditions to further test the applicability of US for use on a large scale as a routine assessment and follow-up tool for appendicular muscle.
DOCUMENT
Research suggests that muscle power is a more critical determinant of physical functioning in older adults than muscle strength. The objective of this study was to systematically review the literature on the effect of power training compared to strength training in older adults on tests for muscle power, two groups of activity-based tests under controlled conditions: generic tests and tests with an emphasis on movement speed, and finally, physical activity level in daily life. A systematic search for randomized controlled trials comparing effects of power training to strength training in older adults was performed in PubMed, Embase, Ebsco/CINAHL, Ebsco/SPORTDiscus, Wiley/Cochrane Library and Scopus. Risk of bias was assessed using the Cochrane Collaboration Tool, and quality of evidence was evaluated using GRADEpro Guideline Development Tool. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcomes separately using a random effects model.
MULTIFILE
Background & aims: Sarcopenia is defined as the age-related loss in muscle quantity and quality which is associated with physical disability. The assessment of muscle quantity plays a role in the diagnosis of sarcopenia. However, the methods used for this assessment have many disadvantages in daily practice and research, like high costs, exposure to radiation, not being portable, or doubtful reliability. Ultrasound has been suggested for the estimation of muscle quantity by estimating muscle mass, using a prediction equation based on muscle thickness. In this systematic review, we aimed to summarize the available evidence on existing prediction equations to estimate muscle mass and to assess whether these are applicable in various adult populations. Methods: The databases PubMed, PsycINFO, and Web of Science were used to search for studies predicting total or appendicular muscle mass using ultrasound. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) and the quality assessment checklist (QA) designed by Pretorius and Keating (2008). Results: Twelve studies were included in this systematic review. The participants were between 18 and 79 years old. Magnetic Resonance Imaging and dual-energy X-ray absorptiometry were used as reference methods. The studies generally had low risk of bias and there were low concerns regarding the applicability (QUADAS-2). Nine out of eleven studies reached high quality on the QA. All equations were developed in healthy adults. Conclusions: The ultrasound-derived equations in the included articles are valid and applicable in a healthy population. For a Caucasian population we recommend to use the equation of Abe et al., 2015. While for an Asian population, we recommend to use the equation of Abe et al., 2018, for the South American population, the use of the equation of Barbosa-Silva et al., 2021 is the most appropriate.
LINK
INTRODUCTION: Minerals may contribute to prevent and treat sarcopenia, the age-related loss of muscle mass, muscle strength, and physical performance. So far, there is no comprehensive review on the impact of minerals on sarcopenia outcomes. The aim of this systematic review is to evaluate the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults.METHODS: A systematic search was conducted between March 2016 and July 2016, in the PubMed database using predefined search terms. Articles on the role of dietary mineral intake or mineral serum concentrations on muscle mass, muscle strength, physical performance, and/or the prevalence of sarcopenia in healthy or frail older adults (average age ≥ 65 years) were selected. Only original research publications were included. The search and data extraction were conducted in duplicate by 2 independent researchers. The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement was followed in constructing this systematic review. The Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies was used to evaluate the quality of the selected articles.RESULTS: From the 3346 articles found, a total of 10 studies met the inclusion criteria. Observational studies showed that serum selenium (n = 1) and calcium intake (n = 1) were significantly associated with muscle mass, and magnesium (n = 1), selenium (n = 1), iron (n = 1), and zinc (n = 1) intake were significantly and positively associated with physical performance in older adults. Furthermore, magnesium (n = 2), selenium (n = 2), calcium (n = 2), and phosphorus (n = 1) intake were associated with the prevalence of sarcopenia. Magnesium supplementation improved physical performance based on one randomized controlled trial. No studies on the role of sodium or potassium on muscle mass, muscle strength, or physical performance were found.CONCLUSION: Minerals may be important nutrients to prevent and/or treat sarcopenia. Particularly, magnesium, selenium, and calcium seem to be most promising. Most of the included studies, however, were observational studies. Therefore, more randomized controlled trials are needed to elucidate the potential benefits of mineral intake to prevent and/or treat sarcopenia and support healthy aging.
DOCUMENT