The aim of this study was to gain insight into the nutritional status, dietary intake and muscle health of older Dutch hip fracture patients to prevent recurrent fractures and to underpin rehabilitation programs. This cross-sectional study enrolled 40 hip fracture patients (mean ± SD age 82 ± 8.0 years) from geriatric rehabilitation wards of two nursing homes in the Netherlands. Assessments included nutritional status (Mini Nutritional Assessment), dietary intake on three non-consecutive days which were compared with Dietary Reference Intake values, and handgrip strength. Muscle mass was measured using Bioelectrical Impedance Analysis and ultrasound scans of the rectus femoris. Malnutrition or risk of malnutrition was present in 73% of participants. Mean energy, protein, fibre and polyunsaturated fat intakes were significantly below the recommendations, while saturated fat was significantly above the UL. Protein intake was
DOCUMENT
Generalized loss of muscle mass is associated with increased morbidity and mortality in patients with cancer. The gold standard to measure muscle mass is by using computed tomography (CT). However, the aim of this prospective observational cohort study was to determine whether point-of-care ultrasound (POCUS) could be an easy-to-use, bedside measurement alternative to evaluate muscle status. Patients scheduled for major abdominal cancer surgery with a recent preoperative CT scan available were included. POCUS was used to measure the muscle thickness of mm. biceps brachii, mm. recti femoris, and mm. vasti intermedius 1 day prior to surgery. The total skeletal muscle index (SMI) was derived from patients’ abdominal CT scan at the third lumbar level. Muscle force of the upper and lower extremities was measured using a handheld dynamometer. A total of 165 patients were included (55% male; 65 ± 12 years). All POCUS measurements of muscle thickness had a statistically significant correlation with CT-derived SMI (r ≥ 0.48; p < 0.001). The strongest correlation between POCUS muscle measurements and SMI was observed when all POCUS muscle groups were added together (r = 0.73; p < 0.001). Muscle strength had a stronger correlation with POCUS-measured muscle thickness than with CT-derived SMI. To conclude, this study indicated a strong correlation between combined muscle thickness measurements performed by POCUS- and CT-derived SMI and measurements of muscle strength. These results suggest that handheld ultrasound is a valid tool for the assessment of skeletal muscle status.
DOCUMENT
OBJECTIVES: Acute hospitalization may lead to a decrease in muscle measures, but limited studies are reporting on the changes after discharge. The aim of this study was to determine longitudinal changes in muscle mass, muscle strength, and physical performance in acutely hospitalized older adults from admission up to 3 months post-discharge.DESIGN: A prospective observational cohort study was conducted.SETTING AND PARTICIPANTS: This study included 401 participants aged ≥70 years who were acutely hospitalized in 6 hospitals. All variables were assessed at hospital admission, discharge, and 1 and 3 months post-discharge.METHODS: Muscle mass in kilograms was assessed by multifrequency Bio-electrical Impedance Analysis (MF-BIA) (Bodystat; Quadscan 4000) and muscle strength by handgrip strength (JAMAR). Chair stand and gait speed test were assessed as part of the Short Physical Performance Battery (SPPB). Norm values were based on the consensus statement of the European Working Group on Sarcopenia in Older People.RESULTS: A total of 343 acute hospitalized older adults were included in the analyses with a mean (SD) age of 79.3 (6.6) years, 49.3% were women. From admission up to 3 months post-discharge, muscle mass (-0.1 kg/m2; P = .03) decreased significantly and muscle strength (-0.5 kg; P = .08) decreased nonsignificantly. The chair stand (+0.7 points; P < .001) and gait speed test (+0.9 points; P < .001) improved significantly up to 3 months post-discharge. At 3 months post-discharge, 80%, 18%, and 43% of the older adults scored below the cutoff points for muscle mass, muscle strength, and physical performance, respectively.CONCLUSIONS AND IMPLICATIONS: Physical performance improved during and after acute hospitalization, although muscle mass decreased, and muscle strength did not change. At 3 months post-discharge, muscle mass, muscle strength, and physical performance did not reach normative levels on a population level. Further research is needed to examine the role of exercise interventions for improving muscle measures and physical performance after hospitalization.
DOCUMENT