BackgroundCritically ill patients are subject to severe skeletal muscle wasting during intensive care unit (ICU) stay, resulting in impaired short- and long-term functional outcomes and health-related quality of life. Increased protein provision may improve functional outcomes in ICU patients by attenuating skeletal muscle breakdown. Supporting evidence is limited however and results in great variety in recommended protein targets.MethodsThe PRECISe trial is an investigator-initiated, bi-national, multi-center, quadruple-blinded randomized controlled trial with a parallel group design. In 935 patients, we will compare provision of isocaloric enteral nutrition with either a standard or high protein content, providing 1.3 or 2.0 g of protein/kg/day, respectively, when fed on target. All unplanned ICU admissions with initiation of invasive mechanical ventilation within 24 h of admission and an expected stay on ventilator support of at least 3 days are eligible. The study is designed to assess the effect of the intervention on functional recovery at 1, 3, and 6 months following ICU admission, including health-related quality of life, measures of muscle strength, physical function, and mental health. The primary endpoint of the trial is health-related quality of life as measured by the Euro-QoL-5D-5-level questionnaire Health Utility Score. Overall between-group differences will be assessed over the three time points using linear mixed-effects models.DiscussionThe PRECISe trial will evaluate the effect of protein on functional recovery including both patient-centered and muscle-related outcomes.Trial registrationClinicalTrials.gov Identifier: NCT04633421. Registered on November 18, 2020. First patient in (FPI) on November 19, 2020. Expected last patient last visit (LPLV) in October 2023.
MULTIFILE
BackgroundICU patients lose muscle mass rapidly and maintenance of muscle mass may contribute to improved survival rates and quality of life. Protein provision may be beneficial for preservation of muscle mass and other clinical outcomes, including survival. Current protein recommendations are expert-based and range from 1.2 to 2.0 g/kg. Thus, we performed a systematic review and meta-analysis on protein provision and all clinically relevant outcomes recorded in the available literature.MethodsWe conducted a systematic review and meta-analyses, including studies of all designs except case control and case studies, with patients aged ≥18 years with an ICU stay of ≥2 days and a mean protein provision group of ≥1.2 g/kg as compared to <1.2 g/kg with a difference of ≥0.2 g/kg between protein provision groups. All clinically relevant outcomes were studied. Meta-analyses were performed for all clinically relevant outcomes that were recorded in ≥3 included studies.ResultsA total of 29 studies published between 2012 and 2022 were included. Outcomes reported in the included studies were ICU, hospital, 28-day, 30-day, 42-day, 60-day, 90-day and 6-month mortality, ICU and hospital length of stay, duration of mechanical ventilation, vomiting, diarrhea, gastric residual volume, pneumonia, overall infections, nitrogen balance, changes in muscle mass, destination at hospital discharge, physical performance and psychological status. Meta-analyses showed differences between groups in favour of high protein provision for 60-day mortality, nitrogen balance and changes in muscle mass.ConclusionHigh protein provision of more than 1.2 g/kg in critically ill patients seemed to improve nitrogen balance and changes in muscle mass on the short-term and likely 60-day mortality. Data on long-term effects on quality of life are urgently needed.
MULTIFILE
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.