Background Inconsistent descriptions of Lumbar multifidus (LM) morphology were previously identified, especially in research applying ultrasonography (US), hampering its clinical applicability with regard to diagnosis and therapy. The aim of this study is to determine the LM-sonoanatomy by comparing high-resolution reconstructions from a 3-D digital spine compared to standard LM-ultrasonography. Methods An observational study was carried out. From three deeply frozen human tissue blocks of the lumbosacral spine, a large series of consecutive photographs at 78 µm interval were acquired and reformatted into 3-D blocks. This enabled the reconstruction of (semi-)oblique cross-sections that could match US-images obtained from a healthy volunteer. Transverse and oblique short-axis views were compared from the most caudal insertion of LM to L1. Results Based on the anatomical reconstructions, we could distinguish the LM from the adjacent erector spinae (ES) in the standard US imaging of the lower spine. At the lumbosacral junction, LM is the only dorsal muscle facing the surface. From L5 upwards, the ES progresses from lateral to medial. A clear distinction between deep and superficial LM could not be discerned. We were only able to identify five separate bands between every lumbar spinous processes and the dorsal part of the sacrum in the caudal anatomical cross-sections, but not in the standard US images. Conclusion The detailed cross-sectional LM-sonoanatomy and reconstructions facilitate the interpretations of standard LM US-imaging, the position of the separate LM-bands, the details of deep interspinal muscles, and demarcation of the LM versus the ES. Guidelines for electrode positioning in EMG studies should be refined to establish reliable and verifiable findings. For clinical practice, this study can serve as a guide for a better characterisation of LM compared to ES and for a more reliable placement of US-probe in biofeedback.
MULTIFILE
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.