Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life’s Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students’ future sustainable design process. Stevens LL, Fehler M, Bidwell D, Singhal A, Baumeister D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics. 2022; 7(1):25. https://doi.org/10.3390/biomimetics7010025
Inland surface water systems are characterized by constant variations in time and space. The increased pressure, of natural or anthropic origin, as a consequence of climate change, population growth and urban development accentuate these changes. Effective water management is key to achieve European waterquality and ecological goals. This is only possible with accurate and extensive knowledge of water systems.The collection of data using platforms such as underwater, water surface or aerial drones is gradually becoming more common and appraised. However, these are not yet standard practice in watermanagement. This work addresses the receptivity of water managers in the Netherlands towards underwater drone technology:· Listing and testing of suitable applications;· Comparison between data requirements of water managers (e.g. legislation) and data thatunderwater drones can provide;· Identification of features should R&D projects focus to increase the interest of the water sector.
The research presented in this thesis has highlighted (bio)geochemical, hydrological, and wetland ecological processes that interact and enhance ecosystem development on wetlands built on fine sediment. A combination of greenhouse and laboratory experiments were conducted. Some measured data from these experiments formed important input for subsequent analysis in a modeling environment. The findings presented in Chapters 2-6 can be divided into four topics: 1) Plant–soil interactions in the terrestrial zone, 2) wetland–terrestrial processes influencing nutrient availability in the land–water zone, 3) effects of plants on sediment consolidation in the terrestrial zone, and 4) effects of bioturbation on nutrient availability in the aquatic zone. The next sections give a summary of the results for these four topics. The last section summarizes the recommendations formulated for the Marker Wadden project.
MULTIFILE