PURPOSE: To investigate the longitudinal association between the macronutrient composition of the diet and frailty.METHODS: Data were obtained from 5205 Dutch middle-aged and older adults participating in the Rotterdam Study. Frailty was measured using a frailty index based on the accumulation of 38 health-related deficits, score between 0 and 100, and a higher score indicating more frailty. Frailty was assessed at baseline and 11 years later (range of 23 years). Macronutrient intake was assessed using food-frequency questionnaires. The association between macronutrients and frailty over time was evaluated using multivariable linear regression, adjusted for the frailty index at baseline, energy intake, and other relevant confounders. All analyses were performed in strata of BMI.RESULTS: Median frailty index score was 13.8 points (IQR 9.6; 19.1) at baseline and increased by a median of 2.3 points (IQR - 2.0; 7.6) after 11 years. Overall, we found no significant associations between intake of carbohydrates or fat and frailty over time. We did observe a significant positive association between an iso-energetic intake of 10 g protein and frailty over time (β 0.31 (95% CI 0.06; 0.55)) which was mainly driven by animal protein (β 0.31 (95% CI 0.07; 0.56)). It did not depend on whether it was substituted fat or carbohydrates.CONCLUSIONS: Our findings suggest that a reduction in the intake of animal protein may improve the overall health status over time in a relatively healthy population. More research is needed on the optimal macronutrient composition of the diet and frailty in more vulnerable populations.
Objective: To describe the discrimination and calibration of clinical prediction models, identify characteristics that contribute to better predictions and investigate predictors that are associated with unplanned hospital readmissions.Design: Systematic review and meta-analysis.Data source: Medline, EMBASE, ICTPR (for study protocols) and Web of Science (for conference proceedings) were searched up to 25 August 2020.Eligibility criteria for selecting studies: Studies were eligible if they reported on (1) hospitalised adult patients with acute heart disease; (2) a clinical presentation of prediction models with c-statistic; (3) unplanned hospital readmission within 6 months. Primary and secondary outcome measures: Model discrimination for unplanned hospital readmission within 6 months measured using concordance (c) statistics and model calibration. Meta-regression and subgroup analyses were performed to investigate predefined sources of heterogeneity. Outcome measures from models reported in multiple independent cohorts and similarly defined risk predictors were pooled.Results: Sixty studies describing 81 models were included: 43 models were newly developed, and 38 were externally validated. Included populations were mainly patients with heart failure (HF) (n=29). The average age ranged between 56.5 and 84 years. The incidence of readmission ranged from 3% to 43%. Risk of bias (RoB) was high in almost all studies. The c-statistic was <0.7 in 72 models, between 0.7 and 0.8 in 16 models and >0.8 in 5 models. The study population, data source and number of predictors were significant moderators for the discrimination. Calibration was reported for 27 models. Only the GRACE (Global Registration of Acute Coronary Events) score had adequate discrimination in independent cohorts (0.78, 95% CI 0.63 to 0.86). Eighteen predictors were pooled. Conclusion: Some promising models require updating and validation before use in clinical practice. The lack of independent validation studies, high RoB and low consistency in measured predictors limit their applicability.PROSPERO registration number: CRD42020159839.
MULTIFILE
07/31/2021