While many researchers have investigated soft skills for different roles related to business, engineering, healthcare and others, the soft skills needed by the chief information security officer (CISO) in a leadership position are not studied in-depth. This paper describes a first study aimed at filling this gap. In this multimethod research, both the business leaders perspective as well as an analysis of CISO job ads is studied. The methodology used to capture the business leaders perspective is via a Delphi study and the jobs adds are studied using a quantitative content analysis. With an increasing threat to information security for companies, the CISO role is moving from a technical role to an executive role. This executive function is responsible for information security across all layers of an organisation. To ensure compliance with the security policy among different groups within the company, such as employees, the board, and the IT department, the CISO must be able to adopt different postures. Soft skills are thus required to be able to assume this leadership role in the organisation. We found that when business leaders were asked about the most important soft skills the top three consisted out of 'communication', ‘leadership’ and 'interpersonal' skills while 'courtesy' was last on the list for a CISO leadership role.
MULTIFILE
From the article: This paper describes the external IT security analysis of an international corporate organization, containing a technical and a social perspective, resulting in a proposed repeatable approach and lessons learned for applying this approach. Part of the security analysis was the utilization of a social engineering experiment, as this could be used to discover employee related risks. This approach was based on multiple signals that indicated a low IT security awareness level among employees as well as the results of a preliminary technical analysis. To carry out the social engineering experiment, two techniques were used. The first technique was to send phishing emails to both the system administrators and other employees of the company. The second technique comprised the infiltration of the office itself to test the physical security, after which two probes were left behind. The social engineering experiment proved that general IT security awareness among employees was very low. The results allowed the research team to infiltrate the network and have the possibility to disable or hamper crucial processes. Social engineering experiments can play an important role in conducting security analyses, by showing security vulnerabilities and raising awareness within a company. Therefore, further research should focus on the standardization of social engineering experiments to be used in security analyses and further development of the approach itself. This paper provides a detailed description of the used methods and the reasoning behind them as a stepping stone for future research on this subject. van Liempd, D., Sjouw, A., Smakman, M., & Smit, K. (2019). Social Engineering As An Approach For Probing Organizations To Improve It Security: A Case Study At A Large International Firm In The Transport Industry. 119-126. https://doi.org/10.33965/es2019_201904l015
MULTIFILE
The aim of this study was to understand the motives for using the Internet, and its associations with users' attitudes, social values, and relational involvement. Also, this study attempted to crossculturally compare the difference in the pattern of motives and the associations among three countries ' the US, the Netherlands, and S. Korea. The design of methods was based on examination and revision of uses and gratification approach toward Internet users. Findings from factor analysis revealed that information seeking and Self-Improvement were the dominant and common reasons for using the Internet across three countries. The differences in the composition of motives in each country were also reported. Strong correlations across countries were found between all the motives and satisfaction of the Internet. Expectation and positive evaluation of the Internet were also important attitudes associated with Internet use motives. Postmaterialist value showed strong association with motives of information seeking and Self-Improvement. Community involvement was significantly associated with Internet use motives in Korean users.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
Despite the benefits of the widespread deployment of diverse Internet-enabled devices such as IP cameras and smart home appliances - the so-called Internet of Things (IoT) has amplified the attack surface that is being leveraged by cyber criminals. While manufacturers and vendors keep deploying new products, infected devices can be counted in the millions and spreading at an alarming rate all over consumer and business networks. The objective of this project is twofold: (i) to explain the causes behind these infections and the inherent insecurity of the IoT paradigm by exploring innovative data analytics as applied to raw cyber security data; and (ii) to promote effective remediation mechanisms that mitigate the threat of the currently vulnerable and infected IoT devices. By performing large-scale passive and active measurements, this project will allow the characterization and attribution of compromise IoT devices. Understanding the type of devices that are getting compromised and the reasons behind the attacker’s intention is essential to design effective countermeasures. This project will build on the state of the art in information theoretic data mining (e.g., using the minimum description length and maximum entropy principles), statistical pattern mining, and interactive data exploration and analytics to create a casual model that allows explaining the attacker’s tactics and techniques. The project will research formal correlation methods rooted in stochastic data assemblies between IoT-relevant measurements and IoT malware binaries as captured by an IoT-specific honeypot to aid in the attribution and thus the remediation objective. Research outcomes of this project will benefit society in addressing important IoT security problems before manufacturers saturate the market with ostensibly useful and innovative gadgets that lack sufficient security features, thus being vulnerable to attacks and malware infestations, which can turn them into rogue agents. However, the insights gained will not be limited to the attacker behavior and attribution, but also to the remediation of the infected devices. Based on a casual model and output of the correlation analyses, this project will follow an innovative approach to understand the remediation impact of malware notifications by conducting a longitudinal quasi-experimental analysis. The quasi-experimental analyses will examine remediation rates of infected/vulnerable IoT devices in order to make better inferences about the impact of the characteristics of the notification and infected user’s reaction. The research will provide new perspectives, information, insights, and approaches to vulnerability and malware notifications that differ from the previous reliance on models calibrated with cross-sectional analysis. This project will enable more robust use of longitudinal estimates based on documented remediation change. Project results and methods will enhance the capacity of Internet intermediaries (e.g., ISPs and hosting providers) to better handle abuse/vulnerability reporting which in turn will serve as a preemptive countermeasure. The data and methods will allow to investigate the behavior of infected individuals and firms at a microscopic scale and reveal the causal relations among infections, human factor and remediation.
Prompt and timely response to incoming cyber-attacks and incidents is a core requirement for business continuity and safe operations for organizations operating at all levels (commercial, governmental, military). The effectiveness of these measures is significantly limited (and oftentimes defeated altogether) by the inefficiency of the attack identification and response process which is, effectively, a show-stopper for all attack prevention and reaction activities. The cognitive-intensive, human-driven alarm analysis procedures currently employed by Security Operation Centres are made ineffective (as opposed to only inefficient) by the sheer amount of alarm data produced, and the lack of mechanisms to automatically and soundly evaluate the arriving evidence to build operable risk-based metrics for incident response. This project will build foundational technologies to achieve Security Response Centres (SRC) based on three key components: (1) risk-based systems for alarm prioritization, (2) real-time, human-centric procedures for alarm operationalization, and (3) technology integration in response operations. In doing so, SeReNity will develop new techniques, methods, and systems at the intersection of the Design and Defence domains to deliver operable and accurate procedures for efficient incident response. To achieve this, this project will develop semantically and contextually rich alarm data to inform risk-based metrics on the mounting evidence of incoming cyber-attacks (as opposed to firing an alarm for each match of an IDS signature). SeReNity will achieve this by means of advanced techniques from machine learning and information mining and extraction, to identify attack patterns in the network traffic, and automatically identify threat types. Importantly, SeReNity will develop new mechanisms and interfaces to present the gathered evidence to SRC operators dynamically, and based on the specific threat (type) identified by the underlying technology. To achieve this, this project unifies Dutch excellence in intrusion detection, threat intelligence, and human-computer interaction with an industry-leading partner operating in the market of tailored solutions for Security Monitoring.