Safety at work The objective of the project Safety at Work is to increase safety at the workplace by applying and combining state of the art artefacts from personal protective equipment and ambient intelligence technology. In this state of the art document we focus on the developments with respect to how (persuasive) technology can help to influence behaviour in a natural, automatic way in order to make industrial environments safer. We focus on personal safety, safe environments and safe behaviour. Direct ways to influence safety The most obvious way to influence behaviour is to use direct, physical measures. In particular, this is known from product design. The safe use of a product is related to the characteristics of the product (e.g., sharp edges), the condition of people operating the product (e.g., stressed or tired), the man-machine interface (e.g., intuitive or complex) and the environmental conditions while operating the product (e.g., noisy or crowded). Design guidelines exist to help designers to make safe products. A risk matrix can be made with two axis: product hazards versus personal characteristics. For each combination one might imagine what can go wrong, and what potential solutions are. Except for ‘design for safety’ in the sense of no sharp edges or a redundant architecture, there is a development called ‘safety by design’ as well. Safety by design is a concept that encourages construction or product designers to ‘design out’ health and safety risks during design development. On this topic, we may learn from the area of public safety. Crime Prevention Through Environmental Design (or Designing Out Crime) is a multi-disciplinary approach to deterring criminal behaviour through environmental design. Designing Out Crime uses measures like taking steps to increase (the perception) that people can be seen, limiting the opportunity for crime by taking steps to clearly differentiate between public space and private space, and promoting social control through improved proprietary concern. Senses Neuroscience has shown that we have very little insight into our motivations and, consequently, are poor at predicting our own behaviour. It seems emotions are an important predictor of our behaviour. Input from our senses are important for our emotional state, and therefore influence our behaviour in an ‘ambient’ (invisible) way. The first sense we focus on is sight. Sight encompasses the perception of light intensity (illuminance) and colours (spectral distribution). Several researchers have studied the effects of light and colour in working environments. Results show, e.g., that elderly people can be helped with higher light levels, that cool colours like blue and green have a relaxing effect, while long-wavelength colours such as orange and red are stimulating and give more arousal, and that concentration and motivation of pupils at school can be influenced with light and colour settings. Identically, sound (hearing) has physiological effects (unexpected sounds cause extra cortisol -the fight or flight hormone- and the opposite for soothing sounds), psychological effects (sounds effect our emotions), cognitive effects (sounds effect our concentration) and behavioural effects (the natural behaviour of people is to avoid unpleasant sounds, and embrace pleasurable sounds). Smell affects 75% of daily emotions and plays an important role in memory, itis also important as a warning for danger (gas, burning smell). Research has shown that smell can influence work performance. Haptic feedback is a relative new area of research, and most studies focus on haptic feedback on handheld and automotive devices. Finally, employers have a duty to take every reasonable precaution to protect workers from heat stress disorders. Influence mechanisms: Cialdini To influence behaviour, we may learn from marketing psychology. Robert Cialdini states that if we have to think about every decision
MULTIFILE
Imagery Rehearsal Therapy (IRT) is effective for trauma-related nightmares and is also a challenge to patients in finding access to their traumatic memories, because these are saved in non-verbal, visual, or audiovisual language. Art therapy (AT) is an experiential treatment that addresses images rather than words. This study investigates the possibility of an IRT-AT combination. Systematic literature review and field research was conducted, and the integration of theoretical and practice-based knowledge resulted in a framework for Imagery Rehearsal-based Art Therapy (IR-AT). The added value of AT in IRT appears to be more readily gaining access to traumatic experiences, living through feelings, and breaking through avoidance. Exposure and re-scripting take place more indirectly, experientially and sometimes in a playlike manner using art assignments and materials. In the artwork, imagination, play and fantasy offer creative space to stop the vicious circle of nightmares by changing theme, story line, ending, or any part of the dream into a more positive and acceptable one. IR-AT emerges as a promising method for treatment, and could be especially useful for patients who benefit least from verbal exposure techniques. This description of IR-AT offers a base for further research.
Background: Motor learning is central to domains such as sports and rehabilitation; however, often terminologies are insufficiently uniform to allow effective sharing of experience or translation of knowledge. A study using a Delphi technique was conducted to ascertain level of agreement between experts from different motor learning domains (i.e., therapists, coaches, researchers) with respect to definitions and descriptions of a fundamental conceptual distinction within motor learning, namely implicit and explicit motor learning. Methods: A Delphi technique was embedded in multiple rounds of a survey designed to collect and aggregate informed opinions of 49 international respondents with expertise related to motor learning. The survey was administered via an online survey program and accompanied by feedback after each round. Consensus was considered to be reached if $70% of the experts agreed on a topic. Results: Consensus was reached with respect to definitions of implicit and explicit motor learning, and seven common primary intervention strategies were identified in the context of implicit and explicit motor learning. Consensus was not reached with respect to whether the strategies promote implicit or explicit forms of learning. Discussion: The definitions and descriptions agreed upon may aid translation and transfer of knowledge between domains in the field of motor learning. Empirical and clinical research is required to confirm the accuracy of the definitions and to explore the feasibility of the strategies that were identified in research, everyday practice and education.