Inhibition of the sodium−glucose cotransporter 2 (SGLT2) by canagliflozin in type 2 diabetes mellitus results in large between-patient variability in clinical response. To better understand this variability, the positron emission tomography (PET) tracer [18F]canagliflozin was developed via a Cu-mediated 18F-fluorination of its boronic ester precursor with a radiochemical yield of 2.0 ± 1.9% and a purity of >95%. The GMP automated synthesis originated [18F]canagliflozin with a yield of 0.5−3% (n = 4) and a purity of >95%. Autoradiography showed [18F]canagliflozin binding in human kidney sections containing SGLT2. Since [18F]canagliflozin is the isotopologue of the extensively characterized drug canagliflozin and thus shares its toxicological and pharmacological characteristics, it enables its immediate use in patients.
DOCUMENT
This report focuses on the feasibility of the power-to-ammonia concept. Power-to-ammonia uses produced excess renewable electricity to electrolyze water, and then to react the obtained hydrogen with nitrogen, which is obtained through air separation, to produce ammonia. This process may be used as a “balancing load” to consume excess electricity on the grid and maintain grid stability. The product, ammonia, plays the role of a chemical storage option for excess renewable energy. This excess energy in the form of ammonia can be stored for long periods of time using mature technologies and an existing global infrastructure, and can further be used either as a fuel or a chemical commodity. Ammonia has a higher energy density than hydrogen; it is easier to store and transport than hydrogen, and it is much easier to liquefy than methane, and offers an energy chain with low carbon emissions.The objective of this study is to analyze technical, institutional and economic aspects of power-to-ammonia and the usage of ammonia as a flexible energy carrier.
DOCUMENT
This century, greenhouse gas emissions such as carbon dioxide, methane and nitrogen oxides must be significantly reduced. Greenhouse gases absorb and emit infrared radiation that contributes to global warming, which can lead to irreversible negative consequences for humans and the environment. Greenhouse gases are caused by the burning of fossil fuels such as crude oil, coal, and natural gas, but livestock farming, and agriculture are also to blame. In addition, deforestation contributes to more greenhouse gases. Of the natural greenhouse gases, water vapor is the main cause of the greenhouse effect, accounting for 90%. The remaining 10% is caused from high to low by carbon dioxide, methane, nitrogen oxides, chlorofluorocarbons, and ozone. In addition, there are industrial greenhouse gases such as fluorinated hydrocarbons, sulphurhexafluoride and nitrogen trifluoride that contribute to the greenhouse effect too. Greenhouse gases are a major cause of climate change, with far-reaching consequences for the welfare of humans and animals. In some regions, extreme weather events like rainfall are more common, while others are associated with more extreme heat waves and droughts. Sea level rise caused by melting ice and an increase in forest fires are undesirable effects of climate change. Countries in low lying areas fear that sea level rise will force their populations to move to the higher lying areas. Climate change is affecting the entire world. An estimated 30-40% o f the carbon dioxide released by the combustion of fossil fuels dissolves into the surface water resulting in an increased concentration of hydrogen ions. This causes the seawater to become more acidic, resulting in a decreasing of carbonate ions. Carbonate ions are an important building block for forming and maintaining calcium carbonate structures of organisms such as oysters, mussels, sea urchins, shallow water corals, deep sea corals and calcareous plankton.
MULTIFILE
Personal data is increasingly used by cities to track the behavior of their inhabitants. While the data is often used to mainly provide information to the authorities, it can also be harnessed for providing information to the citizens in real-time. In an on-going research project on increasing the awareness of motorists w.r.t. the environmental consequences of their driving behavior, we make use of sensors, artificial intelligence, and real-time feedback to design an intervention. A key component for successful deployment of the system is data related to the personal driving behavior of individual motorists. Through this outset, we identify challenges and research questions that relate to the use of personal data in systems, which are designed to increase the quality of life of the inhabitants of the built environment.
DOCUMENT
Renewing agricultural grasslands for improved yields and forage quality generally involves eliminating standing vegetation with herbicides, ploughing and reseeding. However, grassland renewal may negatively affect soil quality and related ecosystem services. On clay soil in the north of the Netherlands, we measured grass productivity and soil chemical parameters of ‘young’ (5–15 years since last grassland renewal) and ‘old’ (>20 years since last grassland renewal) permanent grasslands, located as pairs at 10 different dairy farms. We found no significant difference with old permanent grassland in herbage dry matter yield and fertilizer nitrogen (N) response, whereas herbage N yield was lower in young permanent grassland. Moreover, the young grassland soil contained less soil organic matter (SOM), soil organic carbon (C) and soil organic N compared to the old grassland soil. Grass productivity was positively correlated with SOM and related parameters such as soil organic C, soil organic N and potentially mineralizable N. We conclude that on clay soils with 70% desirable grasses (i.e., Lolium perenne and Phleum pratense) or more, the presumed yield benefit of grassland renewal is offset by a loss of soil quality (SOM and N-total). The current practice of renewing grassland after 10 years without considering the botanical composition, is counter-productive and not sustainable.
DOCUMENT
Storm sewers are known to significantly contribute to annual pollutant loads to receiving water bodies. The storm sewers of the city of Almere discharge the stormwater of 1384 ha of impervious area via 700 storm sewer outfalls (SSOs) to the local receiving water system. This water system suffers from eutrophication and long term build-up of pollutant levels in the sediment bed. In order to be able to select the most effective stormwater management strategy, the municipality of Almere and Water Authority Zuiderzeeland have launched a 2 year extensive monitoring project to measure the stormwater quality and the potential impact of source control and end of pipe measures to decrease the emission via SSOs. Source control measures, such as removal of illicit connections and increasing the cleaning frequency of gully pots showed to be most effective. The potential impact of end of pipesolutions based on settling showed to be very limited due to the low settleability of solids in the storm water of Almere at the SSOs.
DOCUMENT
De toekomst van de zeevaart ziet er volgens Martien Visser zonnig uit. “We hebben weliswaar de ambitie minder afhankelijk te worden van landen van buiten Europa, maar in de praktijk komt daar niets van terecht. We willen zelfs geen datacenters. Extra belangrijk dus te werken aan een CO2-vrije internationale scheepvaart”, stelt hij.
LINK
The dairy sector in the Netherlands aims for a 30% increase in efficiency and 30% carbon dioxide emission reduction compared to the reference year of 1990, and a 20% share of renewable energy, all by the year 2020. Anaerobic Digestion (AD) can play a substantial role in achieving these aims. However, results from this study indicate that the AD system is not fully optimized in combination with farming practices regarding sustainability. Therefore, the Industrial Symbiosis concept, combined with energy and environmental system analysis, Life Cycle Analysis and modeling is used to optimize a farm-scale AD system on four indicators of sustainability (i.e., energy efficiency, carbon footprint, environmental impacts and costs). Implemented in a theoretical case, where a cooperation of farms share biomass feedstocks, a symbiotic AD system can significantly lower external energy consumption by 72 to 92%, carbon footprint by 71 to 91%, environmental impacts by 68 to 89%, and yearly expenditures by 56 to 66% compared to a reference cooperation. The largest reductions and economic gains can be achieved when a surplus of manure is available for upgrading into organic fertilizer to replace fossil fertilizers. Applying the aforementioned symbiotic concept to the Dutch farming sector can help to achieve the stated goals indicated by the Dutch agricultural sector for the year 2020.
DOCUMENT
Speech by dr. Robert Baars at the official inauguration as Professor in Climate Smart Dairy Value Chains at Van Hall Larenstein University of Applied Sciences, 24th September 2021, Dairy Campus, Leeuwarden, The Netherlands.
DOCUMENT
Powerpoint presentation used by Robert Baars at his inauguration on September 24, 2021 as lecturer 'Climate Smart Dairy Value Chains' at Van Hall Larenstein University of Applied Sciences.
DOCUMENT