Greenhouse gas emissions from air transport, and methods to calculate them, are notwell defined in the current literature. While calculating the direct emissions of CO2 is already causefor some debate, the contribution of other emissions and impacts – like nitrogen oxides (NOx),contrails, water vapour – to climate change still lacks a reliable metric. As aviation is the largestemitter of greenhouse gases within tourism, accurate estimates of carbon and non-carbon emissions are important. This paper presents some standardisation as well as general insights to assistresearchers assessing the impact of aviation on climate change in scenario studies or evaluatingmitigation policies. The IPCC introduced a radiative forcing index (RFI) to measure the role of aviation in climate change, which is in scenario studies or evaluations of policies often used as a kind ofconstant ‘equivalence factor’. The paper shows this to be inaccurate and proposes ways to accountfor both carbon and non-carbon climate impacts of air transport
Storm sewers are known to significantly contribute to annual pollutant loads to receiving water bodies. The storm sewers of the city of Almere discharge the stormwater of 1384 ha of impervious area via 700 storm sewer outfalls (SSOs) to the local receiving water system. This water system suffers from eutrophication and long term build-up of pollutant levels in the sediment bed. In order to be able to select the most effective stormwater management strategy, the municipality of Almere and Water Authority Zuiderzeeland have launched a 2 year extensive monitoring project to measure the stormwater quality and the potential impact of source control and end of pipe measures to decrease the emission via SSOs. Source control measures, such as removal of illicit connections and increasing the cleaning frequency of gully pots showed to be most effective. The potential impact of end of pipesolutions based on settling showed to be very limited due to the low settleability of solids in the storm water of Almere at the SSOs.
The growing awareness of consumers of the increasing problem with livestock and meat production due to the high nitrogen emissions and the related impact on climate change drives consumption of plant based vegetarian alternatives. Similarly there is also an increasing demand for animal-free, eco-friendly alternative vegan leather. Consequently there has been significant interest in developing leather-like vegan materials from multiple plant sources, such as mango, pineapple and mushroom based materials. However, the commercialization and the growth of sustainable vegan leather production is hampered significantly by the difficulty of achieving the needed quality for the various consumer products as well as the high prices of the vegan alternatives. In the Growing Leather project two SMEs, BioscienZ and B4Plastics, will combine forces with Avans University of Applied Sciences to develop vegan leather from the mushroom based material called mycelium. BioScienZ is a biotech company with strong expertise and capacity to produce low-cost and consistent quality mycelium. B4Plastics is a material development company, with strengths in designing and distributing eco-plastic products. In this project Avans University will use several mycelium types (produced by BioscienZ), and with the guidance of B4Plastics, it will test various additives under many different conditions, to ultimately develop an environmentally friendly, vegan material that will have comparable material characteristics to animal leather and is competitive in price.
The reclaiming of street spaces for pedestrians during the COVID-19 pandemic, such as on Witte de Withstraat in Rotterdam, appears to have multiple benefits: It allows people to escape the potentially infected indoor air, limits accessibility for cars and reduces emissions. Before ordering their coffee or food, people may want to check one of the many wind and weather apps, such as windy.com: These apps display the air quality at any given time, including, for example, the amount of nitrogen dioxide (NO2), a gas responsible for an increasing number of health issues, particularly respiratory and cardiovascular diseases. Ships and heavy industry in the nearby Port of Rotterdam, Europe’s largest seaport, exacerbate air pollution in the region. Not surprisingly, in 2020 Rotterdam was ranked as one of the unhealthiest cities in the Netherlands, according to research on the health of cities conducted by Arcadis. Reducing air pollution is a key target for the Port Authority and the City of Rotterdam. Missing, however, is widespread awareness among citizens about how air pollution links to socio-spatial development, and thus to the future of the port city cluster of Rotterdam. To encourage awareness and counter the problem of "out of sight - out of mind," filmmaker Entrop&DeZwartFIlms together with ONSTV/NostalgieNet, and Rotterdam Veldakademie, are collaborating with historians of the built environment and computer science and public health from TU Delft and Erasmus University working on a spatial data platform to visualize air pollution dynamics and socio-economic datasets in the Rotterdam region. Following discussion of findings with key stakeholders, we will make a pilot TV-documentary. The documentary, discussed first with Rotterdam citizens, will set the stage for more documentaries on European and international cities, focusing on the health effects—positive and negative—of living and working near ports in the past, present, and future.
Stringent nitrogen oxide (NOx) regulations are crucial for minimizing environmental harm and enhancing public health. The Selective Non-Catalytic Reduction (SNCR) technique is an effective after-treatment method for reducing NOx emissions in combustion systems. By injecting a reagent, typically ammonia or urea, into the flue gas within a specified temperature window, SNCR facilitates the chemical reaction that converts NOx into harmless nitrogen and water. The optimal temperature range for this reaction is critical for maximizing efficiency and effectiveness. The primary advantage of the SNCR technique is its lower installation and operating costs in comparison to other after-treatment methods. The partners involved in this proposal are highly interested in implementing the SNCR method to reduce NOx emissions from heavy-duty engines. This proposal aims to develop a numerical model to evaluate the NOx reduction potential in heavy-duty engine applications using the SNCR method. The model will enable the analysis of key parameters, including the injection site temperature and the reagent-to-NOx concentration ratio, to determine their impact on NOx reduction.