Seaweeds from the genus Porphyra play a big economic role in seaweed aquaculture, mainly in Asia. In Europe, resources are put towards seaweed cultivation, but without attention to the Porphyra species which is also native to Europe. Different nomenclature and specifications are used to describe Porphyra, due to taxonomical reclassification and difficult phenotypical identification. Abiotic & biotic together with seasonal factors make for major variance in chemical compositions that are reported. This is also fueled by differences in chemical analytical methods and procedures followed. Combining taxonomical challenges, variance due to seasonal factors and differences in analysis, overviewing published research on Porphyra constituents such as protein, polysaccharides and fatty acids is warranted. Within this review, cellular consitutents found in Porphyra are discussed, including proteins, polysaccharides, fatty acids and mycosporine-like amino acids (MAA’s). MAA's are considered amongst the strongest UV-photoprotectants found in nature and feature possible applications in cosmetics. As global interest in seaweeds as food, feed and industrial resource is emerging, opportunities for Porphyra constituents is rising.
DOCUMENT
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
DOCUMENT