Optimizing protein intake is a novel strategy to prevent age associated loss of muscle mass and strength in older adults. Such a strategy is still missing for older adults from ethnic minority populations. Protein intake in these populations is expected to be different in comparison to the majority of the population due to several socio-cultural factors. Therefore, the present study examined the dietary protein intake and underlying behavioral and environmental factors affecting protein intake among older adults from ethnic minorities in the Netherlands. We analyzed frequency questionnaire (FFQ) data from the Healthy Life in an Urban Setting (HELIUS) cohort using ANCOVA to describe dietary protein intake in older adults from ethnic minorities in the Netherlands (N = 1415, aged >55 years, African Surinamese, South Asian Surinamese, Moroccan, and Turkish). Additionally, we performed focus groups among older adults from the same ethnic minority populations (N = 69) to discover behavioral and environmental factors affecting protein intake; 40-60% of the subjects did not reach minimal dietary protein recommendations needed to maintain muscle mass (1.0 g/kg bodyweight per day (BW/day)), except for Turkish men (where it was 91%). The major sources of protein originated from animal products and were ethnic specific. Participants in the focus groups showed little knowledge and awareness about protein and its role in aging. The amount of dietary protein and irregular eating patterns seemed to be the major concern in these populations. Optimizing protein intake in these groups requires a culturally sensitive approach, which accounts for specific protein product types and sociocultural factors.
DOCUMENT
Due to the environmental and nutritional benefits of insects, their consumption would be one of the solutions to feed the growing human population. Despite the increasing interest in the use of insects as food and feed, consumer acceptance is the major obstacle to successful implementation in Western countries and we studied the factors that influence consumer acceptance in a group of university students from Germany and the Netherlands. In this exploratory research, a survey was conducted (n = 222). Socio‐demographic and psychological factors were established from a theoretical review. In addition, we elaborated on questions regarding information on the health and environmental benefits of consuming insects. Initially, the data obtained are presented through descriptive statistics. The influence of the socio‐demographic and psychological factors, and the information on the willingness to accept insects as animal feed and human food was analyzed using correlations and multiple linear regressions. Results showed more willingness to accept insects as animal feed than in human food. The acceptance among German and Dutch students seems to be driven by issues similar to those in other European countries, such as visual aspects and knowledge about the benefits. The effect of the information on willingness constitutes an important finding of this study, especially for the use of insects in animal feed, since most of the previous studies have focused on the use of insects as human food. Our data support the need to inform and educate consumers about the environmental and health benefits of entomophagy. We conclude that effective efforts to implement entomophagy could increase the level of familiarity with the insect food and inform (or educate) consumers about its benefits. Insights from this study are useful to address studies focusing on specific segments of possible early adopters and consequently addressing communication strategies in this market segmentation.
DOCUMENT
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE