The authors present the design of the shipping simulation SEL and its integration in the MSP Challenge Simulation Platform. This platform is designed to give policymakers and planners insight into the complexity of Maritime Spatial Planning (MSP) and can be used for interactive planning support. It uses advanced game technology to link real geo- and marine data with simulations for ecology, energy and shipping. The shipping sector is an important economic sector with influential stakeholders. SEL calculates the (future) impact of MSP decisions on shipping routes. This is dynamically shown in key performance indicators (e.g. route efficiencies) and visualised in heat maps of ship traffic. SEL uses a heuristic-based graph-searching algorithm to find paths from one port to another during each simulated month. The performance of SEL was tested for three sea basins: the firth of Clyde, Scotland (smallest), North Sea (with limited data) and Baltic Sea regions (largest, with most complete data). The behaviour of the model is stable and valid. SEL takes between 4 and 17 seconds to generate the desired monthly output. Experiences in 20 sessions with 302 planners, stakeholders and students indicate that SEL is a valuable addition to MSP Challenge, and thereby to MSP.
Het project FIXAR richt zich op het beantwoorden van de vraag: Hoe kan de luchtvaart- en windenergiesector composietenreparaties middels geautomatiseerde technologieën economisch verantwoord maken? Deze vraag komt voort uit eerdere ervaringen in RAAK-mkb projecten op het gebied van composietfabricage, oriëntatie op de nationale en internationale markt en uit de feedback van het betrokken mkb. Het mkb staat voor de uitdaging kennis en ervaring met automatiseringsoplossingen op te doen en nieuwe inspectietechnologieën in te voeren, wil het de groeiende behoefte aan composietenreparaties het hoofd bieden. De doelstelling van het project is dan ook, het door praktijkgericht onderzoek ontwikkelen van geautomatiseerde methoden voor duurzame geautomatiseerde composietenreparaties die technisch- en economisch haalbaar zijn. Om dit doel te bereiken wordt door Hogeschool Inholland samengewerkt met een aantal kennisinstituten en mkb-partners. Het project is opgebouwd rondom vier deelonderzoeken. Hiermee zijn alle aspecten van composietenreparaties gedekt; hulpmiddelen voor geautomatiseerde reparaties, inspectie en validatie, materiaalonderzoek en opleiding van medewerkers. Gelet op de state of the art-kennis, ligt de focus op luchtvaart en windenergie. Het zijn namelijk juist deze twee sectoren die het meest van elkaar kunnen profiteren. Binnen de deelonderzoeken komen state of the art-zaken aan bod als drones en Augement Reality. Aangezien het onderzoek zich richt op actuele problemen bij de bedrijven, zal een deel van het onderzoek bij de bedrijven zelf plaatsvinden en kunnen deze bedrijven direct profiteren van de resultaten van het onderzoek. In het onderwijs komen stage- en afstudeerplekken beschikbaar voor de studenten van de deelnemende hogescholen. Daarnaast vindt er een duurzame vertaalslag plaats van de projectresultaten en bevindingen middels het realiseren van onderwijsmateriaal t.b.v. de curricula van de opleidingen aviation, luchtvaarttechnologie, werktuigbouwkunde, en technische informatica. Het project heeft een blijvende impact op de beroepspraktijk omdat het deelnemende mkb met de resultaten uit dit project hun kennis van reparatieprocessen op hoger niveau brengt.
In 2024, the Dutch government set a new plan for offshore wind farms to become the Netherlands' largest power source by 2032, aiming for 21 GW of installed capacity. By 2050, they expect between 38 and 72 GW of offshore wind power to meet climate-neutral energy goals. Achieving this depends heavily on efficient wind turbines (WTs) operation, but WTs face issues like cavitation, bird strikes, and corrosion, all of which reduce energy output. Regular Inspection and Maintenance (I&M) of WTs is crucial but remains underdeveloped in current wind farms. Presently, I&M tasks are done by on-site workers using rope access, which is time-consuming, costly, and dangerous. Moreover, weather conditions and personnel availability further hinder the efficiency of these operations. The number of operational WTs is expected to rise in the coming years, while the availability of service personnel will keep on declining, highlighting the need for safer and more cost-effective solutions. One promising innovation is the use of aerial robots, or drones, for I&M tasks. Recent developments show that they can perform tasks requiring physical interaction with the environment, such as WT inspections and maintenance. However, the current design of drones is often task-specific, making it financially unfeasible for small and medium-sized enterprises (SMEs) – providing services in WT inspection and maintenance- to adopt. Together with knowledge institutes, SMEs and innovation clusters, this project addresses these urgent challenges by exploring the question of how to develop a modular aerial robot that can be easily and intuitively deployed in offshore environments for inspecting and maintaining WTs to facilitate SMEs adoption of this technology? The goal is to create a modular drone that can be equipped with various tools for different tasks, reducing financial burdens for SMEs, improving worker safety, and facilitating efficient green energy production to support the renewable energy transition.
NO-REGRETS examines the ecological and economic trade-offs of upscaling Offshore Wind Farms (OWFs) in the context of climate change and the ongoing food and nature transitions in the North Sea. NO-REGRETS advances knowledge on potential impacts of OWFs on ocean currents, suspended sediments, microscopic plankton, various life stages of fishes, seabed composition, seafloor organisms, marine mammals, and sea birds. Economic analyses explore changes in the value of marine fisheries and other ocean assets. Co-developed with stakeholders, NO-REGRETS will create tools allowing policymakers, industries and other stakeholders to gauge and optimise the ecological and bioeconomic consequences of North Sea OWF expansion.Collaborative partnersArcadis Nederland B.V., Blauwwind, Boskalis, Breda University of Applied Sciences, Centraal Bureau voor de Statistiek, Clusius C.V., Cooperatie Kottervisserij Nederland, Deltares, EcoShape, Eneco Windmolens Offshore B.V., Heerema Marine Contractors, Jaczon B.V., Nederlandse Vissersbond, Noordelijke Visserij Alliantie, NIOZ, NWO-institutenorganisatie, Ørsted Wind Power Netherlands Holding B.V., Pelagic Freezer Trawler Association, Rijksuniversiteit Groningen, Rijkswaterstaat, RWE Offshore Wind Netherlands B.V., Stichting Naturalis Biodiversity Center, Stichting Wageningen Research, Technische Universiteit Delft, Technische Universiteit Eindhoven, TNO Utrecht, Universiteit Leiden, Universiteit Twente, Universiteit van Amsterdam, Wageningen University & Research.