The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is a relevant issue in many countries, such as in Central and Northern Europe, Australia, New Zealand, China and several other countries. A cavity wall consists of two separate parallel masonry walls (called leaves) connected by metal ties: an inner loadbearing wall and an outer veneer having mostly aesthetic and insulating functions. Cavity walls are particularly vulnerable structural elements. If the two leaves of the cavity wall are not properly connected, their out-of-plane strength may be significantly smaller than that of an equivalent solid wall with the same thickness.The research presented in this paper focuses on a mechanical model developed to predict the failure mode and the strength capacity of metal tie connections in masonry cavity walls. The model considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. Tie failure is a predictable quantity when the possible failure modes can be captured. The mechanical model for the ties has been validated against the outcomes of an experimental campaign conducted earlier by the authors. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. The mechanical model can be easily adopted by practising engineers who aim to model the wall ties accurately in order to assess the strength and behaviour of the structures against earthquakes. Furthermore, the proposed mechanical model is used to extrapolate the experimental results to untested configurations, by performing parametric analyses on key parameters including a higher strength mortar of the calcium silicate brick masonry, a different cavity depth, a different tie embedment depth, and solid versus perforated clay bricks.
Out-of-plane (OOP) wall collapse is one of the most common failure mechanismsin unreinforced masonry (URM) structures. Insufficient connections at wall-to-wall, wall-to-floor or wall-to-roof levels are one of the main reasons for OOP failures. The seismic assessment of URM buildings with insufficient connections became of high relevance. In particular, cavity walls are widely used in many regions, such as Central and Northern Europe, Australia, New Zealand, China, and Groningen in the Netherlands. Defining thus the behaviour of such connections is of prime importance to understand the overall response of URM buildings.This paper is about an experimental campaign conducted at the BuildinG laboratory of Hanze University of Applied Sciences on timber joist-masonry connections, reproducing cavity walls with timber joists in as-built condition. A total of six URM tests were performed, with varying configurations as: two different tie distributions, two precompression levels and two different as-built connections. The tests aim at providing a complete characterization of the behaviour of the timber-joist cavity-wall connections under axial cyclic loading with special attention on the developed failure mechanism and the definition of force-displacement curves for each group of tests performed. The experimental results show that cohesion and friction between joist and masonry are important parameters in terms of the governing failure mechanism, whether it is a joist-sliding or rocking failure.
The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is of high relevance in regions such as in Central and Northern Europe, Australia, New Zealand and China because of the characteristics of the masonry building stock. A cavity wall consists of two separate parallel walls usually connected by metal ties. Cavity walls are particularly vulnerable to earthquakes, as the out-of-plane capacity of each individual leaf is significantly smaller than the one of an equivalent solid wall. This paper presents the results of an experimental campaign conducted by the authors on metal wall tie connections and proposes a mechanical model to predict the cyclic behaviour of these connections. The model has been calibrated by us- ing the experimental results in terms of observed failure modes and force-displacement responses. Results are also presented in statistical format.