Thermal comfort in operating theatres is a less addressed research component of the in-door environment in operating theatres. The air quality naturally gets most attention when considering the risk of surgical site infections. However, the importance of thermal comfort must not be underestimated. In this research, the current thermal comfort situation of staff members is investigated. Results show that the thermal comfort for the members of a surgical team is perceived as not optimal. Application of the PMV and DR models needs further attention when applied for operating theatres. For the investigated ventilation systems, the differences in thermal comfort outcomes are small.
DOCUMENT
Medical equipment is implemented in highly complex hospital environments, such as operating rooms, in hospitals around the world. In operating rooms (ORs), technological equipment is used for surgical activities and activities in support of surgeries. The implementation of government policies in hospitals has resulted in varying implementation activities for (medical) equipment. These result in varying lead times and success rates. An integral and holistic protocol for implementation does not yet exist. In this study, we introduce a protocol for the implementation of (medical) equipment in ORs that consists of implementation factors and implementation activities. Factors and activities are based on data from a systematic literature review and an explorative survey among surgical support staff on factors for the successful implementation of technological and (medical) equipment in ORs. The protocol consists of five factors and related implementation activities: the establishment of a project plan, organisational preparation, technological preparation, maintenance, and training.
LINK
This whitepaper explores what the impact is of the operating system (OS) of a smartphone on its lifespan, costs and environmental impact.
DOCUMENT
A local operating theater ventilation device to specifically ventilate the wound area has been developed and investigated. The ventilation device is combined with a blanket which lies over the patient during the operation. Two configurations were studied: Configuration 1 where HEPA-filtered air was supplied around and parallel to the wound area and Configuration 2 where HEPA-filtered air was supplied from the top surface of the blanket, perpendicular to the wound area. A similar approach is investigated in parallel for an instrument table. The objective of the study was to verify the effectiveness of the local device. Prototype solutions developed were studied experimentally (laboratory) and numerically (CFD) in a simplified setup, followed by experimental assessment in a full scale mock-up. Isothermal as well as non-isothermal conditions were analyzed. Particle concentrations obtained in proposed solutions were compared to the concentration without local ventilation. The analysis procedure followed current national guidelines for the assessment of operating theater ventilation systems, which focus on small particles (<10 mm). The results show that the local system can provide better air quality conditions near the wound area compared to a theoretical mixing situation (proof-of-principle). It cannot yet replace the standard unidirectional downflow systems as found for ultraclean operating theater conditions. It does, however, show potential for application in temporary and emergency operating theaters
DOCUMENT
from the Article: "Operating rooms (ORs) more and more evolve into high-tech environments with increasing pressure on finances, logistics, and a not be neglected impact on patient safety. Safe and cost-effective implementation of technological equipment in ORs is notoriously difficult to manage, specifically as generic implementation activities omit as hospitals have implemented local policies for implementations of technological equipment. )e purpose of this study is to identify success factors for effective implementations of new technologies and technological equipment in ORs, based on a systematic literature review. We accessed ten databases and reviewed included articles. )e search resulted in 1592 titles for review, and finally 37 articles were included in this review. We distinguish influencing factors and resulting factors based on the outcomes of this research. Six main categories of influencing factors on successful implementations of medical equipment in ORs were identified: “processes and activities,” “staff,” “communication,” “project management,” “technology,” and “training.” We identified a seventh category “performance” referring to resulting factors during implementations. We argue that aligning the identified influencing factors during implementation impacts the success, adaptation, and safe use of new technological equipment in the OR and thus the outcome of an implementation. The identified categories in literature are considered to be a baseline, to identify factors as elements of a generic holistic implementation model or protocol for new technological equipment in ORs."
MULTIFILE
SEEV4-City is an innovation project funded by the European Union Interreg North Sea Region Programme. Its main objective is to demonstrate smart electric mobility and integration of renewable energy solutions and share the learnings gained. The project reports on the results of six Operational Pilots (OPs) which have different scales and are located in five different cities in four different countries in the North Sea Region.Loughborough OP (United Kingdom) is the smallest pilot, being a household with a bi-directional EV charging unit for the Nissan Leaf, a stationary battery, and a PV system. In the Kortrijk OP (Belgium), a battery system and a bi-directional charging unit for the delivery van (as well as a smart charging station for ebikes) were added to the energy system. In Leicester (United Kingdom), five unidirectional charging units were to be accompanied by four bi-directional charging units. The Johan Cruyff Arena OP is a larger pilot in Amsterdam, with a 2.8 MWh (partly) second life stationary battery storage for Frequency Control Regulation services and back-up power, 14 fast chargers and one bi-directional charger. Integrated into the existing energy system is a 1 MW PV system that is already installed on the roof. In the Oslo OP, 102 chargers were installed, of which two are fast chargers. A stationary battery energy storage system (BESS) supports the charging infrastructure and is used for peak shaving. The FlexPower OP in Amsterdam is the largest OP with over 900 EV charging outlets across the city, providing smart charging capable of reducing the energy peak demand in the evening.Before the start of the project, three Key Performance Indicators (KPIs) were determined:A. Estimated CO2 reductionB. Estimated increase in energy autonomyC. Estimated Savings from Grid Investment Deferral
DOCUMENT
PowerPointpresentatie gebruikt tijdens de 4D4F-eindreviewbijeenkomst op 8 mei 2019 in Brussel.
DOCUMENT
Author supplied: Abstract—The growing importance and impact of new technologies are changing many industries. This effect is especially noticeable in the manufacturing industry. This paper explores a practical implementation of a hybrid architecture for the newest generation of manufacturing systems. The papers starts with a proposition that envisions reconfigurable systems that work together autonomously to create Manufacturing as a Service (MaaS). It introduces a number of problems in this area and shows the requirements for an architecture that can be the main research platform to solve a number of these problems, including the need for safe and flexible system behaviour and the ability to reconfigure with limited interference to other systems within the manufacturing environment. The paper highlights the infrastructure and architecture itself that can support the requirements to solve the mentioned problems in the future. A concept system named Grid Manufacturing is then introduced that shows both the hardware and software systems to handle the challenges. The paper then moves towards the design of the architecture and introduces all systems involved, including the specific hardware platforms that will be controlled by the software platform called REXOS (Reconfigurable EQuipletS Operating System). The design choices are provided that show why it has become a hybrid platform that uses Java Agent Development Framework (JADE) and Robot Operating System (ROS). Finally, to validate REXOS, the performance is measured and discussed, which shows that REXOS can be used as a practical basis for more specific research for robust autonomous reconfigurable systems and application in industry 4.0. This paper shows practical examples of how to successfully combine several technologies that are meant to lead to a faster adoption and a better business case for autonomous and reconfigurable systems in industry.
DOCUMENT
The capacity to deal with digital transformation is a valuable asset for established organizations, and employees play a crucial role in this process. This study contributes to the understanding of employees’ sensemaking of digital transformation in the tour operating industry. Using prior digital transformation research, construal-level theory (CLT), and dynamic change perspectives, our scholarly work focuses on the complexities of organizational change in a digital transformation context. Although employees generally support digital transformation, our findings show that their perceptions change over time across a range of specific challenges experienced during the employee change journey. Our findings stress the importance of adopting a social exchange lens in digital transformation knowledge as this represents deep structure change that might cause well-designed transformation processes to fail. Implications for hospitality and tourism management are discussed.
MULTIFILE
Background: Modern modeling techniques may potentially provide more accurate predictions of dichotomous outcomes than classical techniques. Objective: In this study, we aimed to examine the predictive performance of eight modeling techniques to predict mortality by frailty. Methods: We performed a longitudinal study with a 7-year follow-up. The sample consisted of 479 Dutch community-dwelling people, aged 75 years and older. Frailty was assessed with the Tilburg Frailty Indicator (TFI), a self-report questionnaire. This questionnaire consists of eight physical, four psychological, and three social frailty components. The municipality of Roosendaal, a city in the Netherlands, provided the mortality dates. We compared modeling techniques, such as support vector machine (SVM), neural network (NN), random forest, and least absolute shrinkage and selection operator, as well as classical techniques, such as logistic regression, two Bayesian networks, and recursive partitioning (RP). The area under the receiver operating characteristic curve (AUROC) indicated the performance of the models. The models were validated using bootstrapping. Results: We found that the NN model had the best validated performance (AUROC=0.812), followed by the SVM model (AUROC=0.705). The other models had validated AUROC values below 0.700. The RP model had the lowest validated AUROC (0.605). The NN model had the highest optimism (0.156). The predictor variable “difficulty in walking” was important for all models. Conclusions: Because of the high optimism of the NN model, we prefer the SVM model for predicting mortality among community-dwelling older people using the TFI, with the addition of “gender” and “age” variables. External validation is a necessary step before applying the prediction models in a new setting.
DOCUMENT