In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity. Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1◦/s for wheelchair angular velocity when compared with the reference system. The twoIMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0◦/s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
Introducing a hyperbolic vortex into a showerhead is a possibility to achieve higher spray velocities for a given discharge without reducing the nozzle diameter. Due to the introduction of air bubbles into the water by the vortex, the spray is pushed from a transition (dripping faucet) regime into a jetting regime, which results in higher droplet and jet velocities using the same nozzle diameter and throughput. The same droplet and jet diameters were realized compared to a showerhead without a vortex. Assuming that the satisfaction of a shower experience is largely dependent on the droplet size and velocity, the implementation of a vortex in the showerhead could provide the same shower experience with 14% less water consumption compared to the normal showerhead. A full optical and physical analysis was presented, and the important chemical parameters were investigated.
MULTIFILE
Quantifying measures of physical loading has been an essential part of performance monitoring within elite able-bodied sport, facilitated through advancing innovative technology. In wheelchair court sports (WCS) the inter-individual variability of physical impairments in the athletes increases the necessity for accurate load and performance measurements, while at the same time standard load monitoring methods (e.g. heart-rate) often fail in this group and dedicated WCS performance measurement methods are scarce. The objective of this review was to provide practitioners and researchers with an overview and recommendations to underpin the selection of suitable technologies for a variety of load and performance monitoring purposes specific to WCS. This review explored the different technologies that have been used for load and performance monitoring in WCS. During structured field testing, magnetic switch based devices, optical encoders and laser systems have all been used to monitor linear aspects of performance. However, movement in WCS is multidirectional, hence accelerations, decelerations and rotational performance and their impact on physiological responses and determination of skill level, is also of interest. Subsequently both for structured field testing as well as match-play and training, inertial measurement units mounted on wheels and frame have emerged as an accurate and practical option for quantifying linear and non-linear movements. In conclusion, each method has its place in load and performance measurement, yet inertial sensors seem most versatile and accurate. However, to add context to load and performance metrics, position-based acquisition devices such as automated image-based processing or local positioning systems are required.