To better control the growing process of horticulture plants greenhouse growers need an automated way to efficiently and effectively find where diseases are spreading.The HiPerGreen project has done research in using an autonomous quadcopter for this scouting. In order for the quadcopter to be able to scout autonomously accurate location data is needed. Several different methods of obtaining location data have been investigated in prior research. In this research a relative sensor based on optical flow is looked into as a method of stabilizing an absolute measurement based on trilateration. For the optical flow sensor a novel block matching algorithm was developed. Simulated testing showed that Kalman Filter based sensor fusion of both measurements worked to reduce the standard deviation of the absolute measurement from 30 cm to less than 1 cm, while drift due to dead-reckoning was reduced to a maximum of 11 cm from over 36 cm.
DOCUMENT
This paper describes the concept of a new algorithm to control an Unmanned Aerial System (UAS) for accurate autonomous indoor flight. Inside a greenhouse, Global Positioning System (GPS) signals are not reliable and not accurate enough. As an alternative, Ultra Wide Band (UWB) is used for localization. The noise is compensated by combining the UWB with the delta position signal from a novel optical flow algorithm through a Kalman Filter (KF). The end result is an accurate and stable position signal with low noise and low drift.
DOCUMENT
Traditional IMU based PDR systems suffer from rapidly growing drift effects due to the inherent bias of the inertial sensor. Many existing solutions to mitigate this problem use aiding sensors or information as heuristics or map data. We propose a new optimization framework to solve the PDR estimation problem where the sensors biases are explicitly included as state variables and therefore be used to correct for bias effects in the PDR. By using a smoothing approach and exploiting the rigid structure of a MIMU array one can solve for the slowly varying sensor biases. This paper presents the method and gives an exemplary result of a walking trial. Good agreements in the position and orientation with an optical reference system were found. Moreover, accelerometer and gyroscope biases could be estimated accordingly. Further research includes the performance of more experiments under various conditions such that a more quantitative evaluation can be obtained. In addition, an exploration of a (pseudo) realtime filter version would be valuable such that the system can be applied online.
MULTIFILE