The performance of a visible light communication (VLC) system based on power domain non-orthogonal multiple access (PD-NOMA) is experimentally evaluated in this paper. The simplicity of the adopted non-orthogonal scheme is provided by the fixed power allocation method at the transmitter and the single one-tap equalization executed before the successive interference cancellation at the receiver. The experimental results proved the successful transmission of the PD-NOMA scheme with three users in VLC links of up to 2.5 m, after a proper choice of the optical modulation index. All users achieved error-vector magnitude (EVM) performances below FEC limits in all evaluated transmission distances. At 2.5 m, the user with the best performance reaches an EVM = 2.3 %.
DOCUMENT
In this paper, artificial intelligence tools are implemented in order to predict trajectory positions, as well as channel performance of an optical wireless communications link. Case studies for industrial scenarios are considered to this aim. In a first stage, system parameters are optimized using a hybrid multi-objective optimization (HMO) procedure based on the grey wolf optimizer and the non-sorting genetic algorithm III with the goal of simultaneously maximizing power and spectral efficiency. In a second stage, we demonstrate that a long short-term memory neural network (LSTM) is able to predict positions, as well as channel gain. In this way, the VLC links can be configured with the optimal parameters provided by the HMO. The success of the proposed LSTM architectures was validated by training and test root-mean square error evaluations below 1%.
LINK
Twirre V2 is the evolution of an architecture for mini-UAV platforms which allows automated operation in both GPS-enabled and GPSdeprived applications. This second version separates mission logic, sensor data processing and high-level control, which results in reusable software components for multiple applications. The concept of Local Positioning System (LPS) is introduced, which, using sensor fusion, would aid or automate the flying process like GPS currently does. For this, new sensors are added to the architecture and a generic sensor interface together with missions for landing and following a line have been implemented. V2 introduces a software modular design and new hardware has been coupled, showing its extensibility and adaptability
DOCUMENT