In het SaxShirt-project wordt een comfortabel shirt ontwikkeld waarmee fysiologische aspecten van de drager kunnen worden gemeten, zonder dat de drager daar extra inspanning voor hoeft te leveren. Dergelijke technologieën noemen we Zero Effort Technologies (Baecker, 2011). De belangrijkste fysiologische aspecten die in eerste instantie gemeten gaan worden zijn: 1) temperatuur 2) hartslag 3) ademhaling. Het project is gestart in september 2013. Het doel is om in oktober 2014 een praktisch demonstratiemodel te hebben van het shirt waarmee de mogelijkheden van de huidige technologie kunnen worden gedemonstreerd. Het is belangrijk dat het shirt niet alleen comfortabel zit, maar ook robuust en eenvoudig te wassen en reinigen is. Voorafgaand aan dit project zijn er al verscheidene onderzoeken en ontwikkelingen geweest om mogelijkheden voor het shirt te onderzoeken. Om een definitief implementatieplan te kunnen opstellen voor het huidige project, was er behoefte om nog eenmaal een korte verbredende onderzoeksfase uit te voeren. Dit rapport is het resultaat van deze fase. Na de verbredende fase zijn in november 2013 besluiten genomen en is begonnen aan de implementatie van het demonstratiemodel. De belangrijke momenten staan in onderstaand overzicht: • Oktober 2013: Start SaxShirt Project • November 2013: Vaststellen Plan van Aanpak (PvA) voor implementatie • Juli 2014: Afronden implementatie • Oktober 2014: Oplevering eerste demonstratiemodel SaxShirt Dit rapport beschrijft de state-of-the art van technieken waarmee bovenstaande fysiologische aspecten kunnen worden gemeten. Het doel van dit rapport is om een overzicht van in textiel-integreerbare fysiologische sensoren te geven. Dit overzicht dient als basis en discussiestuk voor het pan van aanpak voor de implementatie en kan worden gebruikt als introductie voor nieuwe medewerkers op het SaxShirt project.
MULTIFILE
Afsluiting Tot slot geef ik u een korte samenvatting van mijn openbare les. Ik ben de les begonnen met een verwijzing naar het rapport Micro Systems Technlogy, exploring opportunities van de Stichting Toekomstbeeld der Techniek. Ik heb laten zien dat er inmiddels grote markten zijn ontstaan waarin microsysteemtechnologie een essentiële rol speelt. Ik heb verteld over de wereld van de microsystemen en hoe die in onze dagelijkse omgeving een steeds belangrijker rol gaan spelen. Over microsystemen die steeds kleiner worden, zelfs de grootte van zandkorrels zullen hebben. Ik heb geprobeerd aan te geven dat er mogelijk dramatische veranderingen in onze leefomgeving en in onze levensstijl kunnen gaan optreden. Kleine zaken, grote gevolgen. Tot slot heb ik u mijn plannen ontvouwd voor een tweetal concrete projecten. Hiermee wil ik proberen te helpen met het toepassen van MST-technologie bij bedrijven en in de medische wereld. Door het onderwijs aan concrete projecten te koppelen, wil ik het onderwerp MST aantrekkelijk maken voor de studenten. Studenten die kiezen voor een vak met toekomst. Die toekomst begint nu.
DOCUMENT
Dit Tech-Info-blad is tot stand gekomen binnen het kader van het kennisoverdrachtproject "Fabricage van producten met geavanceerde productiemiddelen voor het omvormen en verbinden - FPGP". In dit kader zijn ook de volgende publicaties uitgegeven: TI.07.36 - "Laser-MIG/MAG hybride lassen" en TI.07.38 - "Geautomatiseerd buigen". Uitgebreide informatie betreffende het laserlassen is tevens te vinden op de websites www.dunneplaat-online.nl en www.verbinden-online.nl, waarop tevens de volgende relevante Tech-Info bladen vrij gedownload kunnen worden: TI.99.08 - "Laserlassen van beklede plaat", TI.00.11 - "Oppervlaktebehandelingen met de laser (cladden, legeren en dispergeren)", TI.00.12 - "Laseren waterstraalsnijden van gelamineerde en beklede plaat", "TI.07.34 - Laserlassen vs. conventionele lastechnieken", TI.07.35 - "Omvormen", IOP 7.2 - "Lasertransformatieharden", alsmede de praktijkaanbeveling PA.02.13 - "Oppervlaktebewerkingen met hoogvermogen lasers".
DOCUMENT
Hoewel drones worden gebruikt in steeds toenemende civiele toepassingen voor een goede daad, zijn kwaadwillende drones ook steeds meer en steeds vaker worden ingezet om schade aan te richten. Huis, tuin en keukendrones zijn in staat om door te dringen tot zwaarbeveiligde gebieden en daar verwoestende schade aan te brengen. Ze zijn goedkoop, precies en kunnen steeds grotere afstanden afleggen. Kwaadwillende drones vormen een groot gevaar voor de nationale veiligheid. In dit KIEM-project onderzoeken wij de vraag in hoeverre is het mogelijk om drones te ontwikkelen die volledig autonoom een ongecontroleerde omgeving (luchtruim) veilig kunnen houden? Counter drones moeten kamikaze-drones kunnen signaleren en uitschakelen. Bestaande systemen zijn nog onvoldoende in staat om kwaadwillende drones op tijd uit te schakelen. Bij Defensie, de Nationale Politie en het gevangeniswezen is dringend behoefte aan systemen die kwaadwillende drones kunnen detecteren en uitschakelen. Er zijn thans enkele (Europese) systemen waarmee drones kunnen worden gedetecteerd, onder andere met radiofrequentiesignalen (voelen), optische- en radartechnologie (zien) en akoestische systemen (horen). Geen van deze systemen vormen de ‘silver bullet’ voor het bestrijden van kwaadwillende drones, vooral kleine en laagvliegende drones. Met een feasibility study wordt nagegaan wat de state-of-the-art is van de huidige counter dronetechnologieën en op welke technologiedomeinen het consortium waarde kan toevoegen aan de ontwikkeling van effectieve counter drones. Saxion en haar partners zet zich de komende jaren in op Sleuteltechnologieën als: Human Robotic Interaction, Perception, Navigation, Systems Development, Mechatronics en Cognition. Technologieën die terugkomen in counter drones, maar ook worden doorontwikkeld voor andere toepassingsgebieden. Het project bestaat uit 4 fasen: een onderzoek naar de huidige counter dronetechnologieën (IST), onderzoek naar gewenste/toekomstige counter dronetechnologieën (SOLL), een gap-analyse (TOR) én een omgevingsanalyse om na te gaan wat er elders in Europa al aan onderzoek plaatsvindt. Tevens wordt een netwerk ontwikkeld om counter droneontwikkeling mogelijk te maken.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.