Blog in het kader van het onderzoeksproject ‘The Network is the Message‘ Met dit onderzoek willen Hogeschool Rotterdam en Hogeschool Utrecht een antwoord geven op de vraag: “Hoe kan de effectiviteit van communicatie in online sociale netwerken worden beoordeeld en verbeterd?” In deze blog: De hele wereld bestaat uit netwerken. Of dat nu in de natuur is of in steden, tussen mensen of bij merken, het maakt weinig verschil. Uiteindelijk zijn wij allemaal met elkaar en met alles verbonden. Dat geldt ook voor de connecties tussen mensen en merken. Die kunnen heel losjes zijn of heel hecht – en alles daartussen. Die connecties met merken zijn niet alleen terug te vinden in de associatienetwerken die zich in onze hersenen bevinden, maar hebben ook een effect op ons gedrag. Maar wat zijn die associatienetwerken precies, in welk verband staan ze tot (koop)gedrag en hoe kun je ze beïnvloeden?
In deze publicatie wordt ingegaan op het verbinden van dunne plaat en buis met behulp van de diverse soldeerprocessen. Deze publicatie is er een uit een serie van vijf die naast de algemene publicatie (TI.03.13) tevens drie andere verbindingstechnieken behandelen, zoals lassen (TI.03.14), lijmen (TI.03.15) en mechanisch verbinden (TI.03.16).
Voor u ligt de voorlichtingspublicatie "Hoogtemperatuursolderen". Deze publicatie is bedoeld voor allen die te maken hebben of te maken krijgen met de techniek van het hoogtemperatuursolderen. Daarbij moet worden gedacht aan bijvoorbeeld constructeurs, ontwerpers, lastechnici, werkvoorbereiders, enzovoorts. Deze voorlichtingspublicatie is een update van de in 1992 verschenen eerste druk die indertijd onder auspiciën van de NIL-werkgroep van de Technische Commissie I-A Subcie Hoogtemperatuursolderen is opgesteld. De updating was noodzakelijk, daar zich in de afgelopen jaren een groot aantal ontwikkelingen heeft voorgedaan op het gebied van soldeertechnieken.
Wetenschappers gebruiken bioorthogonale klikreacties tussen trans-cyclooctenen (TCOs) en tetrazines (Tz) om geheel nieuwe geneesmiddelen te ontwikkelen waarmee heel gericht cruciale biologische doelmoleculen kunnen worden geraakt, zodat ziektes op een veel selectievere manier kunnen worden behandeld. Recentelijk heeft de Radboud Universiteit een nieuw TCO-derivaat ontwikkeld en geoctrooieerd dat beschikt over twee orthogonale handvatten, goede stabiliteit, een snelle klik-kinetiek en een biocompatibele “click-to-release” functionaliteit. Bovendien kan deze TCO in een efficiënte synthese met hoge zuiverheid geproduceerd worden in tegenstelling tot vergelijkbare gepubliceerde stoffen. Binnen dit KIEM project zullen ‘ready-to-use’ TCO-producten ontwikkeld worden, gebaseerd op dit nieuwe TCO-derivaat. Dit is belangrijk om de drempel te verlagen voor onderzoekers om deze nieuwe technologie te benutten in hun toepassingen en versnelt daarmee de ontwikkeling van “slimme” geneesmiddelen of materialen. De werkzaamheden in dit project zullen bestaan uit literatuuronderzoek, synthetisch ontwerp van TCO-derivaten, chemische synthese, onderzoek naar de eigenschappen van de stoffen en contact leggen met potentiele gebruikers. De beoogde projectresultaten zijn chemische methoden om geactiveerde TCOs te synthetiseren, 5–10 geactiveerde eindproducten, inzicht in de chemie van TCOs, inzicht in de kinetiek en stabiliteit van de nieuwe TCOs en nieuwe samenwerkingen. In dit project wordt samengewerkt tussen de Radboud Universiteit en het biotechnologiebedrijf Synvenio. Binnen de synthetisch organische chemie afdeling van de Radboud Universiteit is de eerdergenoemde nieuwe TCO ontwikkeld. Synvenio is een jong biotechnologiebedrijf dat bioactieve stoffen beschikbaar maakt voor biochemisch- en biomedische onderzoekers. Het team bestaat uit chemici met veel affiniteit met biochemie, waaronder een van de uitvinders van de nieuwe TCO.
De wereldwijde fosforchemische industrie is sterk afhankelijk van witte fosfor (P4) dat wordt geproduceerd uit gemijnd fosfaaterts (Ca5(PO4)3F), een eindige en schaarse fossiele grondstof. De omzetting van P4 in een scala aan producten is op dit moment ook niet duurzaam, maar energie-intensief en inefficiënt, terwijl deze organofosforverbindingen een prominente rol spelen in de moderne wetenschap en samenleving vanwege hun brede toepassingen. De reductie van anorganisch fosfaat (oxidatietoestand +5) naar P4 (ox. toestand 0) brengt deze inefficienties met zich mee, aangezien veel hoogwaardige vervolgproducten zich in de +3 of +5 formele oxidatietoestand bevinden. In dit KIEM GoChem project zullen onderzoekers van de Universiteit van Amsterdam in samenwerking met MKB SusPhos b.v. nieuwe synthetische methodologieën ontwikkelen die onnodige redoxcycli in de fosforchemie voorkomen en daarnaast gebruikmaken van afvalstromen als startmateriaal. Het project is relevant voor de Nationale Wetenschapsagenda “Circulaire economie en grondstoffenefficiëntie” en heeft als doel om de duurzaamheid van de fosforchemische industrie te verbeteren, waarbij fosfaatafval als grondstof gebruikt wordt en het gebruik van witte fosfor (P4) geheel wordt omzeild. SusPhos b.v. maakt gebruik van een onuitputtelijke hernieuwbare grondstof, met name fosfaten teruggewonnen uit afvalwater in de vorm van struviet (magnesium ammoniumfosfaat) om duurzame fosfaathoudende meststoffen en brandverstragers te produceren, en bouwt dit jaar een proeffabriek om deze techniek op te schalen. In dit nieuwe GoChem project richten SusPhos b.v. en de UvA zich op de ontwikkeling van een nieuw protocol voor de omzetting van struviet naar hoogwaardigere fosfaatesters, waarmee in potentie een nieuw portfolio aan gerecycleerde producten op de markt gezet kan worden dat kan concurreren met de huidige producten en als zodanig een belangrijke bijdrage levert aan de totstandkoming van een circulaire economie. De directe, redoxneutrale omzetting van hernieuwbare anorganische fosfaten in belangrijke organofosfaatproducten is een kans waarmee onnodige verspilling van meet af aan wordt geëlimineerd.
Witte LED lampen veroveren de verlichtingsmarkt. De meest gebruikte combinatie is een blauwe LED met de fosfor YAG:Ce3+ die een deel van het blauwe licht omzet in geel licht. Dit geeft efficiënt, maar onaangenaam ‘koel’ wit licht. Toevoeging van een oranje/rode fosfor verbetert de lichtkwaliteit. Helaas gaat dit samen met een drastische verlaging van de efficiëntie doordat de huidige rode fosforen veel rood licht uitzenden in het dieprode golflengtegebied waar de ooggevoeligheid sterk afneemt. Het doel van dit project is om nieuwe materialen te ontwikkelen die blauw licht absorberen en efficiënt omzetten in smalbandig rood licht. Hiermee kan een LED gemaakt worden met een hoge kwaliteit warme kleur wit zonder veel te hoeven inleveren op de efficiëntie. Het europium ion Eu3+ is de ideale kandidaat voor het uitzenden van smalbandig rood licht waar de ooggevoeligheid hoog is. Helaas absorbeert Eu3+ het blauwe LED licht slecht. In dit project wordt onderzocht of het Ce3+ ion gebruikt kan worden als sensibilisator voor rode Eu3+ emissie: efficiënte absorptie van blauw licht door Ce3+ gevolgd door energie-overdracht naar Eu3+ dat vervolgens smalbandig rood licht uitzendt. Dit is een veelbelovend concept dat maar beperkt onderzocht is omdat bekend is dat luminescentie in paren van Eu3+ en Ce3+ gedoofd kan worden via een charge transfer toestand. Er is echter weinig onderzoek gedaan naar de afstandsafhankelijk voor deze doving en de invloed van de chemische samenstelling van het gastrooster. In dit project wordt een intensieve haalbaarheidsstudie uitgevoerd naar de sensibilisatie van Eu3+ emissie door Ce3+. Hiertoe wordt de afstand tussen naaste Ce-Eu buren en de covalentie van het gastroosters gevarieerd door beide ionen in te bouwen in diverse anorganische verbindingen. Het verkregen inzicht wordt gebruikt voor het realiseren van efficiëntere warm witte LED lampen en een reductie van het elektriciteitsverbruik voor verlichting en beeldschermen.