Description: The Neck Pain and Disability Scale (NPDS or NPAD) is a questionnaire aiming to quantify neck pain and disability.1 It is a patient-reported outcome measure for patients with any type of neck pain, of any duration, with or without injury.1,2 It consists of 20 items: three related to pain intensity, four related to emotion and cognition, four related to mobility of the neck, eight related to activity limitations and participation restrictions and one on medication.1,3 Patients respond to each item on a 0 to 5 visual analogue scale of 10 cm. There is also a nine-item short version.4 Feasibility: The NPDS is published and available online (https://mountainphysiotherapy.com.au/wp-content/uploads/2016/08/Neck-Pain-and-Disability-Scale.pdf).1 The NPDS is an easy to use questionnaire that can be completed within 5 to 8 minutes.1,5 There is no training needed to administer the instrument but its validity is compromised if the questionnaire must be read to the patient.2 Higher scores indicate higher severity (0 for normal functioning to 5 for the worst possible situation ‘your’ pain problem has caused you).2 The total score is the sum of scores on the 20 items (0 to 100).1 The maximum acceptable number of missing answers is three (15%).4 Two studies found a minimum important change of 10 points (sensitivity 0.93; specificity 0.83) and 11.5 points (sensibility 0.74; specificity 0.70), respectively.6,7 The NPDS is available in English, Dutch, Finnish, French, German, Italian, Hindi, Iranian, Korean, Turkish, Japanese and Thai. Reliability and validity: Two systematic reviews have evaluated the clinimetric properties of 11 of the translated versions.5,8 The Finnish, German and Italian translations were particularly recommended for use in clinical practice. Face validity was established and content validity was confirmed by an adequate reflection of all aspects of neck pain and disability.1,8 Regarding structural validity, the NPDS is a multidimensional scale, with moderate evidence that the NPDS has a three-factor structure (with explained variance ranging from 63 to 78%): neck dysfunction related to general activities; neck pain and neck-specific function; and cognitive-emotional-behavioural functioning. 4,5,9 A recent overview of four systematic reviews found moderate-quality evidence of high internal consistency (Cronbach’s alphas ranging from 0.86 to 0.93 for the various factors).10 Excellent test-retest reliability was found (ICC of 0.97); however, the studies were considered to be of low quality.3,10 Construct validity (hypotheses-testing) seems adequate when the NPDS is compared with the Neck Disability Index and the Global Assessment of Change with moderate to strong correlations (r = 0.52 to 0.86), based on limited moderate-quality studies.3,11,12 One systematic review reported good responsiveness to change in patients (r = 0.59).12
DOCUMENT
BACKGROUND AND AIM: Functional Capacity Evaluations (FCEs) are used to quantify physical aspects of work capacity. Safety is a critical issue for clinical use of an FCE. Patients with Chronic Low Back Pain (CLBP) are known to report a temporary increase in pain following an FCE, but it is not known whether this increase is a normal pain response to FCE. It is currently unknown how healthy subjects respond to an FCE and whether this should be interpreted as a normal reaction after physical exercise. This study was performed to quantify the intensity, duration, location and nature of the pain response following an FCE in healthy subjects and to compare this pain response with the pain response of patients with CLBP from a previous study.METHODS: A total of 197 healthy working subjects between 20 and 60 years of age volunteered to participate in this study. All subjects performed a 12-item FCE. Pain response was measured by a self-constructed Pain Response Questionnaire (PRQ). Descriptive statistics were used to describe the pain response following an FCE. Mann-Whitney and t-tests were performed to compare the data from this study with data of patients with CLBP from a previous study.RESULTS: About 82% of all subjects reported a pain response following the FCE. The intensity of the pain response after 24 h post FCE was a median of 3.0 on a numeric rating scale (0-10). About 78% of all pain was reducible to muscle soreness. Pain was most often reported in the upper legs (51%), the lower back (38%) the shoulders (37%) and upper arms (36%). Symptoms decreased to pre-FCE levels in a mean of 3 days. The pain response of 2 subjects (1%) lasted for 3 weeks. The intensity and duration of the pain response of healthy subjects was not significantly different from the response of patients with CLBP.CONCLUSION: Pain response of 99% of all subjects who reported a pain response was interpreted as normal. It was concluded that a pain response following an FCE can be expected in healthy subjects and that this pain response is a normal musculoskeletal reaction. The pain response of patients with CLBP resembles the pain response of healthy subjects.
DOCUMENT
Pain following burn injuries can be severe and may persist after hospital discharge. The experience of pain is influenced by multiple biological and psychosocial factors. Post-discharge pain may be related to pain experienced during hospitalization as well as anxiety associated with these pain experiences. There are also protective factors; one notable example is optimism. However, the role of optimism in burn-related pain has not yet been investigated. This study aimed to describe the extent of pain measured over 14 consecutive days post-discharge and to examine its relationship with background pain, procedural pain, pain-related anxiety, and optimism. This multi-center longitudinal cohort study was conducted in five burns centres. The results showed that 50 % of the patients had a pain score ≥ 2 on a 0 – 10 scale after discharge, which on average decreased further over the next 14 days. However, a subgroup of patients maintained elevated pain levels. Patients with higher pain scores post-discharge were more likely to have experienced higher levels of background pain and procedural pain in-hospital and they scored lower on optimism. Pain-related anxiety did not independently contribute to pain post-discharge. The results indicate that patients with high pain scores during hospital admission may need specific attention regarding pain management when they leave the hospital. Furthermore, patients may benefit from optimism-inducing interventions in the hospital and thereafter.
DOCUMENT
Client: Blue Plan regional activity centre (UNEP/MAP), subcontracted through TEC Conseille, Marseille As part of a regional workshop organized by the Blue Plan in July 2008, one of the conclusions of the Group "Tourism and Climate Change” was the need for saving energy in tourism transportation and particularly of air transport, as air transport is responsible for the largest share of greenhouse gas emissions caused by tourism. In the period 1998-2005, the share of international arrivals by air in the Mediterranean area rose from 23% to 40%, respectively, or in numbers, from 47 to 122 million tourists. Some countries, particularly islands, almost entirely depend on air transport for their international tourism. For example in 2005 air transport is used by 87%, 78%, 73%, 64% and 51% of international tourists arriving in, respectively, Israel, Egypt, Spain, Tunisia and Morocco. According to Plan Bleu forecasts on international arrivals, assuming that the share of air transport remains the same, the number of tourists travelling by plane will reach over 158 million by 2025. Given the role of aviation in the emissions of greenhouse gases (GHG), such a development is clearly not sustainable in the light of the necessary reduction of emissions to avoid dangerous climate change. The overall aim of the study is to inform policy makers and entrepreneurs in both destination and in origin countries, on possible options to reduce emissions of greenhouse gases from air travel, while at the same time not impairing the economic development of tourism. To do this, CSTT has developed a tourism scenario model for all countries with Mediterranean coasts describing inbound and outbound international tourism and domestic tourism by all available transport modes and giving both contributions to GDP and total GHG emissions. This model responses to global mitigation policies (increasing the cost of carbon emissions) as well as national policies (taxes, subsidies and changes in transport quality per transport mode). Using the model both global and national policies can be assessed as well as the risks of global mitigation policies for specific countries.