Many attempts have been made to build an artificial brain. This paper aims to contribute to the conceptualization of an artificial learning system that functionally resembles an organic brain in a number of important neuropsychological aspects. Probably the techniques (algorithms) required are already available in various fields of artificial intelligence. However, the question is how to combine those techniques. The combination of truly autonomous learning, in which "accidental" findings (serendipity) can be used without supervision, with supervised learning from both the surrounding and previous knowledge, is still very challenging. In the event of changed circumstances, network models that can not utilize previously acquired knowledge must be completely reset, while in representation-driven networks, new formation will remain outside the scope, as we will argue. In this paper considerations to make artificial learning functionally similar to organic learning, and the type of algorithm that is necessary in the different hierarchical layers of the brain are discussed. To this end, algorithms are divided into two types: conditional algorithms (CA) and completely unsupervised learning. It is argued that in a conceptualisation of an artificial device that is functional similar to an organic learning system, both conditional learning (by applying CA’s), and non-conditional (supervised) learning must be applied.
MULTIFILE
In an event related potential (ERP) experiment using written language materials only, we investigated a potential modulation of the N400 by the modality switch effect. The modality switch effect occurs when a first sentence, describing a fact grounded in one modality, is followed by a second sentence describing a second fact grounded in a different modality. For example, "A cellar is dark" (visual), was preceded by either another visual property "Ham is pink" or by a tactile property "A mitten is soft." We also investigated whether the modality switch effect occurs for false sentences ("A cellar is light"). We found that, for true sentences, the ERP at the critical word "dark" elicited a significantly greater frontal, early N400-like effect (270-370 ms) when there was a modality mismatch than when there was a modality-match. This pattern was not found for the critical word "light" in false sentences. Results similar to the frontal negativity were obtained in a late time window (500-700 ms). The obtained ERP effect is similar to one previously obtained for pictures. We conclude that in this paradigm we obtained fast access to conceptual properties for modality-matched pairs, which leads to embodiment effects similar to those previously obtained with pictorial stimuli.
LINK
Functional Magnetic Resonance Imaging (fMRI) was used to study the cerebral underpinning of resonance behavior in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-voice audition and bimanual motor imagery circumvented a hemisphere bias associated with a main melody.Both tasks activated ventral premotor and auditory cortices, bilaterally, and the anterior parietal cortex right-dominantly, compared to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery, suggesting that musicians not only recruited their manual motor repertoire but alsoperformed a spatial transformation from the vertical perceived pitch axis to the horizontal keyboard. Imagery-specific activations in controls comprised left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron'circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.