This paper describes the participatory development process of a web-based communication system focusing on disease management, particularly infection control of Methicillin-resistant Staphylococcus aureus (MRSA). These infections are becoming a major public health issue; they can have serious consequences such as pneumonia, sepsis or death [1]. This makes it even more important for people to be provided with up-to-date and reliable information. Users of a bilingual communication system (Dutch and German) participated in the development process via a needs assessment, the co-creation of the content and the system via usability tests, and in the summative evaluation of the usage of the system. The system enabled users to search efficiently and effectively for practical and relevant information. Moreover, we found that the participation of the intended users is a prerequisite to create a fit between the needs and expectations of the end-users, the technology and the social context of usage of technology. The summative evaluation showed that the system was frequently used (approximately 11,000 unique visitors per month). The most popular categories include ‘MRSA in general’ (20%, both languages) and ‘Acquiring MRSA’ (17% NL, 13% GER). Most users enter the site using internet search engines (Google) instead of the on-site search engine. When they are on the site, they prefer convenient searching via FAQ or related questions. Furthermore, the results showed that the participation of stakeholders is a prerequisite for a successful implementation of the system. To guide the participation of stakeholders we developed a roadmap that integrates human-centered development with business modelling activities.
Aims and objectives: To describe the process of implementing evidence-based practice (EBP) in a clinical nursing setting. Background: EBP has become a major issue in nursing, it is insufficiently integrated in daily practice and its implementation is complex. Design: Participatory action research. Method: The main participants were nurses working in a lung unit of a rural hospital. A multi-method process of data collection was used during the observing, reflecting, planning and acting phases. Data were continuously gathered during a 24-month period from 2010 to 2012, and analysed using an interpretive constant comparative approach. Patients were consulted to incorporate their perspective. Results: A best-practice mode of working was prevalent on the ward. The main barriers to the implementation of EBP were that nurses had little knowledge of EBP and a rather negative attitude towards it, and that their English reading proficiency was poor. The main facilitators were that nurses wanted to deliver high-quality care and were enthusiastic and open to innovation. Implementation strategies included a tailored interactive outreach training and the development and implementation of an evidence-based discharge protocol. The academic model of EBP was adapted. Nurses worked according to the EBP discharge protocol but barely recorded their activities. Nurses favourably evaluated the participatory action research process. Conclusions: Action research provides an opportunity to empower nurses and to tailor EBP to the practice context. Applying and implementing EBP is difficult for front-line nurses with limited EBP competencies. Relevance to clinical practice: Adaptation of the academic model of EBP to a more pragmatic approach seems necessary to introduce EBP into clinical practice. The use of scientific evidence can be facilitated by using pre-appraised evidence. For clinical practice, it seems relevant to integrate scientific evidence with clinical expertise and patient values in nurses’ clinical decision making at the individual patient level.
From the article : "In this paper the implications of different research approaches and methods are illustrated by using two projects of the authors. Both projects take place in the same context: exploring participatory innovation within Small-to-Medium sized Enterprizes (SMEs). The main aspects coming forward when comparing the research characteristics of both projects are the importance of time and momentum, the structural set up of the project, people or participants and the abilities of the people involved. The research goal and the background of the researcher are main determinants for the chosen research methods. We hope with this paper to make researchers aware of the implications of the research methods and approach on the results of the project."
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
Since the COVID-19-pandemic, the enormous societal, medical and financial impact associated with the transfer of infectious pathogens from wild animals to humans and other animals urged for further follow-up in early signalling management of zoonotic diseases. Consequently, the Raad-voor-Dierenaangelegenheden and the Dutch government currently recommend to set up a surveillance system and cooperation with (applied-)scientists to detect zoonotic diseases using data and samples from animals entering wildlife rehabilitation centres. Each year approximately 100,000 wild animals are submitted to ±78 Dutch wildlife rehabilitation centres. This would potentially generate an enormous amount of currently unutilized information, which could reduce disease incidence and avoid the problems of scaling-up disease control if early detection can be improved. The current wild animal health surveillance system could be much enhanced if wild animals taken into care by wildlife rehabilitation centres would be consistently registered, processed and shared. However the processes, technology and biological knowhow to do this are currently not up to standards. Besides for this to work, wildlife rehabilitation centres need to be more strongly aligned and strongly embedded in the current health networks. Therefore, our objective is to develop a sustainable participatory collaboration system in the current health networks, on which first the focus is on valid and reliable data bundling of animals and their diseases from wildlife rehabilitation centres. These data can be made applicable to scientific research and the professional field to be able to signal the risks of (inter)national zoonotic diseases. We will focus our methodology on the societal, technical and biological elements involved. Van Hall Larenstein Hogeschool, Wageningen University, the Dutch Wildlife Health Centre, the National-Institute-for-Public-Health-and-the-Environment, Falcon together with Dutch wildlife rehabilitation centres will develop the fundaments of the surveillance system. The Foundation DierenLot, the Ministry-of-Agriculture-Nature-and-Food-quality, Flemish wildlife rehabilitation centres, vets, and governmental organisations are partners, among others.