The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
Currently, promising new tools are under development that will enable crime scene investigators to analyze fingerprints or DNA-traces at the crime scene. While these technologies could help to find a perpetrator early in the investigation, they may also strengthen confirmation bias when an incorrect scenario directs the investigation this early. In this study, 40 experienced Crime scene investigators (CSIs) investigated a mock crime scene to study the influence of rapid identification technologies on the investigation. This initial study shows that receiving identification information during the investigation results in more accurate scenarios. CSIs in general are not as much reconstructing the event that took place, but rather have a “who done it routine.” Their focus is on finding perpetrator traces with the risk of missing important information at the start of the investigation. Furthermore, identification information was mostly integrated in their final scenarios when the results of the analysis matched their expectations. CSIs have the tendency to look for confirmation, but the technology has no influence on this tendency. CSIs should be made aware of the risks of this strategy as important offender information could be missed or innocent people could be wrongfully accused.
Discussions on policy and management initiatives to facilitate individuals throughout working careers take place without sufficient insight into how career paths are changing, how these changes are related to a modernization of life course biographies, and whether this leads to increased labour market transitions. This paper asks how new, flexible labour market patterns can best be analyzed using an empirical, quantitative approach. The data used are from the career module of the Panel Study of Belgian Households (PSBH). This module, completed by almost 4500 respondents consists of retrospective questions tracing lengthy and even entire working life histories. To establish any changes in career patterns over such extended periods of time, we compare two evolving methodologies: Optimal Matching Analysis (OMA) and Latent Class Regression Analysis (LCA). The analyses demonstrate that both methods show promising potential in discerning working life typologies and analyzing sequence trajectories. However, particularities of the methods demonstrate that not all research questions are suitable for each method. The OMA methodology is appropriate when the analysis concentrates on the labour market statuses and is well equipped to make clear and interpretable differentiations if there is relative stability in career paths during the period of observation but not if careers become less stable. Latent Class has the strength of adopting covariates in the clustering allowing for more historically connected types than the other methodology. The clustering is denser and the technique allows for more detailed model fitting controls than OMA. However, when incorporating covariates in a typology, the possibilities of using the typology in later, causal, analyses is somewhat reduced.
MULTIFILE