We investigated the effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Police officers received this training as well as a regular police arrest and self-defence skills training (control training) in a crossover design. Officers' performance was tested on several variables in six reality-based scenarios before and after each training intervention. Results showed improved performance after the reflex-based training, while there was no such effect of the regular police training. Improved performance could be attributed to better communication, situational awareness (scanning area, alertness), assertiveness, resolution, proportionality, control and converting primary responses into tactical movements. As officers trained complete violent situations (and not just physical skills), they learned to use their actions before physical contact for de-escalation but also for anticipation on possible attacks. Furthermore, they learned to respond against attacks with skills based on their primary reflexes. The results of this study seem to suggest that reflex-based self-defence training better prepares officers for performing in high-pressure arrest situations than the current form of police arrest and self-defence skills training. Practitioner Summary: Police officers' performance in high-pressure arrest situations improved after a reflex-based self-defence training, while there was no such effect of a regular police training. As officers learned to anticipate on possible attacks and to respond with skills based on their primary reflexes, they were better able to perform effectively.
The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7–12 years) participated in this study and were randomly assigned to an experimental and control group. All children scored below the 16th percentile on a standardized test of motor ability and balance skills (Movement Assessment Battery for children (M-ABC-2)). Before and after a six-week Wii-intervention (M = 8 h, 22 min, SD = 53 min), the balance skills of the experimental group and control group were measured with the M-ABC-2 and the Bruininks–Oseretsky test of motor proficiency (BOT-2). Both groups improved on all tests. The M-ABC-2 and the BOT-2 total balance-scores of the experimental group improved significantly from pre to post intervention, whereas those of the control group showed no significant progress. This resulted in significant interaction-effects, favoring the experimental children. No transfer-effects of the intervention on balance-related skills were demonstrated. Our findings showed that the Wii-balance board is an effective intervention for children with poor balance control. Further development and investigation of the intervention could be directed toward the implementation of the newly acquired balance-skills in daily life.
MULTIFILE
Although stressors are frequently linked to several negative health outcomes, experiencing stressors may be necessary for enhancing performance. At present, the literature is lacking a unified, comprehensive framework that accounts for both positive and negative outcomes following stressors. Therefore, we introduce the framework of hormesis, which has been applied in biological research for decades. According to hormesis, small-to-medium doses of a stressor can stimulate an organism's response, while large doses cause detrimental effects. In this article, we argue that these dose-response dynamics can be found in various domains of performance psychology (i.e., eustress and distress, psychological momentum, emotions, motivation, confidence, cognitive performance, training, skill acquisition, adversity, and trauma). Furthermore, hormesis also accounts for the inter- and intra-individual variability commonly found in responses to stressors. Finally, from an applied perspective, leveraging hormesis may stimulate new psychological interventions that mimic the well-known effects of (toxic) vaccinations at the level of behavior.