Dit artikel bespreekt de relatie tussen organisatiecultuur en performance management. De auteurs stellen dat gedrag niet op zichzelf staat, maar wordt gevormd door onderliggende waarden en overtuigingen. Om performance management in de praktijk succesvol te laten zijn, moet het worden opgenomen in de organisatiecultuur. Onderzoek van De Waal (2003) laat zien dat de vier gedragsaspecten; verantwoordelijkheid, managementstijl, actiegerichtheid en communicatie van belang zijn voor goed performance management. Ten slotte wordt in het artikel nader onderzoek aangekondigd naar de cultuurelementen in het Cultuur-arenamodel van Straathof (2009) die van invloed zijn op het invoeren en toepassen van performance management.
The objective of the study described in this paper is to define safety metrics that are based on the effectiveness of risk controls. Service providers define and implement such risk controls in order to prevent hazards developing into an accident. The background of this research is a specific need of the aviation industry where small and medium-sized enterprises lack large amounts of safety-related data to measure and demonstrate their safety performance proactively. The research department of the Aviation Academy has initiated a 4-year study, which will test the possibility to develop new safety indicators that will be able to represent safety levels proactively without the benefit of large data sets. As part of the development of alternative safety metrics, safety performance indicators were defined that are based on the effectiveness of risk controls. ICAO (2013) defines a risk control as “a defence with specific mitigation actions, preventive controls or recovery measures put in place to prevent the realization of a hazard or its escalation into an undesirable consequence”. Examples of risk controls are procedures, education and training, a piece of equipment etc. It is crucial for service providers to determine whether the introduced risk controls are indeed effective in reducing the targeted risk. ICAO (2013) describes the effectiveness of risk control as "the extent to which the risk control reduces or eliminates the safety risks”, but does not provide guidance on how to measure the effectiveness of risk control. In this study, a generic metrics for the effectiveness of risk controls based on their effectiveness was developed. The definition of the indicators allows, for each risk control, derivation of specific indicators based on the generic metrics. The suitability of the metrics will subsequently be tested in pilot studies within the aviation industry.
Various tools for safety performance measurement have been introduced in order to fulfil the need for safety monitoring in organisations, which is tightly related to their overall performance and achievement of their business goals. Such tools include accident rates, benchmarking, safety culture and climate assessments, cost-effectiveness studies, etc. The current work reviews the most representative methods for safety performance evaluation that have been suggested and applied by a variety of organisations, safety authorities and agencies. This paper discusses several viewpoints of the applicability, feasibility and appropriateness of such tools, based on the viewpoints of managers and safety experts involved in a relevant research that was conducted in a large aviation organisation. The extensive literature cited, the discussion topics, along with the conclusions and recommendations derived, might be considered by any organisation that seeks a realistic safety performance assessment and establishment of effective measurement tools.
In the last decade, the automotive industry has seen significant advancements in technology (Advanced Driver Assistance Systems (ADAS) and autonomous vehicles) that presents the opportunity to improve traffic safety, efficiency, and comfort. However, the lack of drivers’ knowledge (such as risks, benefits, capabilities, limitations, and components) and confusion (i.e., multiple systems that have similar but not identical functions with different names) concerning the vehicle technology still prevails and thus, limiting the safety potential. The usual sources (such as the owner’s manual, instructions from a sales representative, online forums, and post-purchase training) do not provide adequate and sustainable knowledge to drivers concerning ADAS. Additionally, existing driving training and examinations focus mainly on unassisted driving and are practically unchanged for 30 years. Therefore, where and how drivers should obtain the necessary skills and knowledge for safely and effectively using ADAS? The proposed KIEM project AMIGO aims to create a training framework for learner drivers by combining classroom, online/virtual, and on-the-road training modules for imparting adequate knowledge and skills (such as risk assessment, handling in safety-critical and take-over transitions, and self-evaluation). AMIGO will also develop an assessment procedure to evaluate the impact of ADAS training on drivers’ skills and knowledge by defining key performance indicators (KPIs) using in-vehicle data, eye-tracking data, and subjective measures. For practical reasons, AMIGO will focus on either lane-keeping assistance (LKA) or adaptive cruise control (ACC) for framework development and testing, depending on the system availability. The insights obtained from this project will serve as a foundation for a subsequent research project, which will expand the AMIGO framework to other ADAS systems (e.g., mandatory ADAS systems in new cars from 2020 onwards) and specific driver target groups, such as the elderly and novice.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations